Department of Microorganisms, Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany.
Technical University of Braunschweig, Institute of Microbiology, Braunschweig, Germany.
Microbiome. 2024 Oct 4;12(1):191. doi: 10.1186/s40168-024-01909-7.
Sulfate-reducing bacteria (SRB) are frequently encountered in anoxic-to-oxic transition zones, where they are transiently exposed to microoxic or even oxic conditions on a regular basis. This can be marine tidal sediments, microbial mats, and freshwater wetlands like peatlands. In the latter, a cryptic but highly active sulfur cycle supports their anaerobic activity. Here, we aimed for a better understanding of how SRB responds to periodically fluctuating redox regimes.
To mimic these fluctuating redox conditions, a bioreactor was inoculated with peat soil supporting cryptic sulfur cycling and consecutively exposed to oxic (one week) and anoxic (four weeks) phases over a period of > 200 days. SRB affiliated to the genus Desulfosporosinus (Bacillota) and the families Syntrophobacteraceae, Desulfomonilaceae, Desulfocapsaceae, and Desulfovibrionaceae (Desulfobacterota) successively established growing populations (up to 2.9% relative abundance) despite weekly periods of oxygen exposures at 133 µM (50% air saturation). Adaptation mechanisms were analyzed by genome-centric metatranscriptomics. Despite a global drop in gene expression during oxic phases, the perpetuation of gene expression for energy metabolism was observed for all SRBs. The transcriptional response pattern for oxygen resistance was differentiated across individual SRBs, indicating different adaptation strategies. Most SRB transcribed differing sets of genes for oxygen consumption, reactive oxygen species detoxification, and repair of oxidized proteins as a response to the periodical redox switch from anoxic to oxic conditions. Noteworthy, a Desulfosporosinus, a Desulfovibrionaceaea, and a Desulfocapsaceaea representative maintained high transcript levels of genes encoding oxygen defense proteins even under anoxic conditions, while representing dominant SRB populations after half a year of bioreactor operation.
In situ-relevant peatland SRB established large populations despite periodic one-week oxygen levels that are one order of magnitude higher than known to be tolerated by pure cultures of SRB. The observed decrease in gene expression regulation may be key to withstand periodically occurring changes in redox regimes in these otherwise strictly anaerobic microorganisms. Our study provides important insights into the stress response of SRB that drives sulfur cycling at oxic-anoxic interphases. Video Abstract.
硫酸盐还原菌 (SRB) 经常出现在缺氧到需氧的过渡区,在那里它们会定期经历微需氧甚至需氧条件。这些过渡区包括海洋潮汐沉积物、微生物垫以及淡水湿地,如泥炭地。在后一种环境中,一个隐匿但高度活跃的硫循环支持了它们的厌氧活动。在这里,我们旨在更好地了解 SRB 如何应对周期性波动的氧化还原状态。
为了模拟这些波动的氧化还原条件,生物反应器接种了支持隐匿硫循环的泥炭土,并在超过 200 天的时间内连续经历了需氧(一周)和缺氧(四周)阶段。硫酸盐还原菌隶属于脱硫球菌属(芽孢杆菌)和互营杆菌科、脱硫单胞菌科、脱硫囊菌科和脱硫弧菌科(脱硫杆菌),尽管每周有 133µM(空气饱和度 50%)的氧气暴露,但仍成功建立了生长种群(最高相对丰度为 2.9%)。通过基于基因组的宏转录组学分析了适应机制。尽管在需氧阶段整体基因表达下降,但所有 SRB 的能量代谢基因表达都得以维持。氧气抗性的转录响应模式在单个 SRB 之间存在差异,表明存在不同的适应策略。大多数 SRB 转录了不同的一组基因,用于氧气消耗、活性氧解毒和氧化蛋白的修复,以应对从缺氧到需氧条件的周期性氧化还原转换。值得注意的是,一个脱硫球菌属、一个脱硫弧菌科和一个脱硫囊菌科的代表即使在缺氧条件下也保持高水平的编码氧气防御蛋白的基因转录水平,而在生物反应器运行半年后,它们仍然是主要的 SRB 种群。
尽管周期性的一周氧气水平比纯培养 SRB 耐受的水平高一个数量级,但原位相关的泥炭地 SRB 仍建立了大量种群。观察到的基因表达调控减少可能是这些原本严格厌氧微生物在周期性氧化还原状态变化中生存的关键。我们的研究为 SRB 的应激反应提供了重要的见解,这驱动了硫在需氧-缺氧界面的循环。