Suppr超能文献

用于高效消毒的等离子体活化水的场外生产:高价态氮氧化物的关键作用及新的化学途径

Off-site production of plasma-activated water for efficient disinfection: The crucial role of high valence NO and new chemical pathways.

作者信息

Wang Zifeng, Wang Xiangyu, Xu Shenghang, Zhou Renwu, Zhang Mingyan, Li Wanchun, Zhang Zizhu, Wang Luge, Chen Jinkun, Zhang Jishen, Guo Li, Pei Dandan, Liu Dingxin, Rong Mingzhe

机构信息

Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710049, China; Laboratory Center of Stomatology, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710049, China; State Key Laboratory of Electrical Insulation and Power Equipment, Center for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an, 710049, China; Interdisciplinary Research Center of Frontier Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.

State Key Laboratory of Electrical Insulation and Power Equipment, Center for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an, 710049, China.

出版信息

Water Res. 2024 Dec 1;267:122541. doi: 10.1016/j.watres.2024.122541. Epub 2024 Sep 27.

Abstract

Efficient disinfection of pathogens is a critical concern for environmental disinfection and clinical anti-infective treatment. Plasma-activated water (PAW) is a promising alternative to chemical disinfectants and antibiotics for its strong disinfection ability and not inducing any acute toxicity. Previous plasma sources are commonly placed near or fully in contact with water as possible for more efficient activation, but the risk of electrode corrosion and metal particle contamination of water threatens the safety and stability of PAW. In this work, plasma-activated gas (PAG) rich in high-valence NO is generated by a hybrid plasma configuration and introduced into water for off-site PAW production. It is found that plasma-generated O dominates the gas-phase reactions for the formation of high-valence NO. With the time-evolution of O concentration, the gaseous NO radicals are produced behind NO formation, but will be decomposed before NO quenching. By decoupling the roles of gaseous NO, NO, and O in the water activation, results show that short-lived aqueous species induced by gaseous NO radicals play the most crucial role in PAW disinfection, and the acidic environment induced by NO is also beneficial for microbial inactivation. Moreover, SEM photographs and biomacromolecule leakage assays demonstrate that PAW disrupts the cell membranes of bacteria and thus achieves inactivation. In real-life applications, an integrated device for off-site PAW production with a yield of 2 L/h and a bactericidal efficiency of >99.9 % is developed. The PAW of 50 mL produced in 3 min using this device is more effective in disinfection than 0.5 % NaClO and 3 % HO with the same bacterial contact time. Overall, this work provides new avenues for efficient PAW production and deepens insights into the fundamental chemical processes that govern the reactive chemistry in PAW for environmental and biomedical applications.

摘要

病原体的高效消毒是环境消毒和临床抗感染治疗的关键问题。等离子体活化水(PAW)因其强大的消毒能力且不产生任何急性毒性,是化学消毒剂和抗生素的一种有前景的替代品。以前的等离子体源通常尽可能靠近水放置或完全与水接触以实现更高效的活化,但电极腐蚀和水中金属颗粒污染的风险威胁着PAW的安全性和稳定性。在这项工作中,通过混合等离子体配置产生富含高价态NO的等离子体活化气体(PAG),并将其引入水中以进行异地PAW生产。研究发现,等离子体产生的O主导了高价态NO形成的气相反应。随着O浓度的时间演变,气态NO自由基在NO形成之后产生,但在NO猝灭之前会分解。通过解耦气态NO、NO和O在水活化中的作用,结果表明气态NO自由基诱导的短寿命水相物种在PAW消毒中起最关键作用,并且NO诱导的酸性环境也有利于微生物失活。此外,扫描电子显微镜照片和生物大分子泄漏试验表明,PAW破坏细菌细胞膜从而实现灭活。在实际应用中,开发了一种异地PAW生产的集成装置,产量为2 L/h,杀菌效率>99.9%。使用该装置在3分钟内产生的50 mL PAW在相同细菌接触时间下比0.5% NaClO和3% H₂O₂的消毒效果更好。总体而言,这项工作为高效PAW生产提供了新途径,并加深了对控制PAW中反应化学的基本化学过程的理解,以用于环境和生物医学应用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验