Intensive Care Department in Hospital Garcia de Orta, Almada, Portugal; ICU in Hospital CUF Tejo, Lisboa, Portugal; Cardiovascular Research Center, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal.
Department of Anesthesia and Intensive Care, "Policlinico-San Marco" University Hospital, Catania, Italy.
Anaesth Crit Care Pain Med. 2024 Dec;43(6):101431. doi: 10.1016/j.accpm.2024.101431. Epub 2024 Oct 3.
Integrating machine learning (ML) into intensive care units (ICUs) can significantly enhance patient care and operational efficiency. ML algorithms can analyze vast amounts of data from electronic health records, physiological monitoring systems, and other medical devices, providing real-time insights and predictive analytics to assist clinicians in decision-making. ML has shown promising results in predictive modeling for patient outcomes, early detection of sepsis, optimizing ventilator settings, and resource allocation. For instance, predictive algorithms have demonstrated high accuracy in forecasting patient deterioration, enabling timely interventions and reducing mortality rates. Despite these advancements, challenges such as data heterogeneity, integration with existing clinical workflows, and the need for transparency and interpretability of ML models persist. The deployment of ML in ICUs also raises ethical and legal considerations regarding patient privacy and the potential for algorithmic biases. For clinicians interested in the early embracing of AI-driven changes in clinical practice, in this review, we discuss the challenges of integrating AI and ML tools in the ICU environment in several steps and issues: (1) Main categories of ML algorithms; (2) From data enabling to ML development; (3) Decision-support systems that will allow patient stratification, accelerating the foresight of adequate individual care; (4) Improving patient outcomes and healthcare efficiency, with positive society and research implications; (5) Risks and barriers to AI-ML application to the healthcare system, including transparency, privacy, and ethical concerns.
将机器学习 (ML) 融入重症监护病房 (ICU) 可以显著提高患者护理和运营效率。ML 算法可以分析电子健康记录、生理监测系统和其他医疗设备中大量的数据,提供实时洞察和预测分析,以帮助临床医生做出决策。ML 在预测患者结局、早期检测败血症、优化呼吸机设置和资源分配方面显示出了有前途的结果。例如,预测算法在预测患者恶化方面表现出了很高的准确性,能够及时进行干预并降低死亡率。尽管取得了这些进展,但仍存在数据异质性、与现有临床工作流程的集成、ML 模型的透明度和可解释性等挑战。ML 在 ICU 中的部署也引发了涉及患者隐私和算法偏见的伦理和法律问题。对于热衷于在临床实践中尽早接受人工智能驱动变革的临床医生,我们在这篇综述中讨论了在 ICU 环境中整合 AI 和 ML 工具的几个步骤和问题:(1) ML 算法的主要类别;(2) 从数据支持到 ML 开发;(3) 决策支持系统,可实现患者分层,加速提供适当的个体化护理;(4) 改善患者结局和医疗保健效率,对社会和研究具有积极意义;(5) AI-ML 应用于医疗保健系统的风险和障碍,包括透明度、隐私和伦理问题。