Suppr超能文献

多模态知识图谱增强眼科病历管理。

Enhancing ophthalmology medical record management with multi-modal knowledge graphs.

机构信息

Shenzhen International Graduate School, Tsinghua University, Shenzhe, P.R. China.

Beijing Tongren Hospital, Capital Medical University, Beijing, P.R. China.

出版信息

Sci Rep. 2024 Oct 5;14(1):23221. doi: 10.1038/s41598-024-73316-9.

Abstract

The electronic medical record management system plays a crucial role in clinical practice, optimizing the recording and management of healthcare data. To enhance the functionality of the medical record management system, this paper develops a customized schema designed for ophthalmic diseases. A multi-modal knowledge graph is constructed, which is built upon expert-reviewed and de-identified real-world ophthalmology medical data. Based on this data, we propose an auxiliary diagnostic model based on a contrastive graph attention network (CGAT-ADM), which uses the patient's diagnostic results as anchor points and achieves auxiliary medical record diagnosis services through graph clustering. By implementing contrastive methods and feature fusion of node types, text, and numerical information in medical records, the CGAT-ADM model achieved an average precision of 0.8563 for the top 20 similar case retrievals, indicating high performance in identifying analogous diagnoses. Our research findings suggest that medical record management systems underpinned by multimodal knowledge graphs significantly enhance the development of AI services. These systems offer a range of benefits, from facilitating assisted diagnosis and addressing similar patient inquiries to delving into potential case connections and disease patterns. This comprehensive approach empowers healthcare professionals to garner deeper insights and make well-informed decisions.

摘要

电子病历管理系统在临床实践中起着至关重要的作用,优化了医疗保健数据的记录和管理。为了增强病历管理系统的功能,本文开发了一个针对眼科疾病的定制模式。构建了一个多模态知识图谱,该图谱基于经过专家审查和去识别的真实世界眼科医学数据。基于这些数据,我们提出了一种基于对比图注意网络 (CGAT-ADM) 的辅助诊断模型,该模型使用患者的诊断结果作为锚点,并通过图聚类实现辅助病历诊断服务。通过在病历中的节点类型、文本和数值信息上实施对比方法和特征融合,CGAT-ADM 模型在 20 个相似病例检索的前 20 名中取得了平均精度 0.8563,表明在识别类似诊断方面具有很高的性能。我们的研究结果表明,基于多模态知识图谱的病历管理系统极大地促进了人工智能服务的发展。这些系统提供了一系列的好处,从辅助诊断和解决类似患者的查询,到深入挖掘潜在的病例联系和疾病模式。这种综合方法使医疗保健专业人员能够获得更深入的见解并做出明智的决策。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fc69/11455959/3308066de490/41598_2024_73316_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验