Suppr超能文献

一种新型局部自动主成分分析算法在微电子领域透射电子显微镜 - ASTAR分析中衍射图案去噪的应用。

Application of a novel local and automatic PCA algorithm for diffraction pattern denoising in TEM-ASTAR analysis in microelectronics.

作者信息

Printemps Tony, Dabertrand Karen, Vives Jérémy, Valery Alexia

机构信息

STMicroelectronics, Crolles, France.

STMicroelectronics, Crolles, France.

出版信息

Ultramicroscopy. 2024 Dec;267:114059. doi: 10.1016/j.ultramic.2024.114059. Epub 2024 Oct 1.

Abstract

This paper introduces a novel denoising method for TEM-ASTAR™ Diffraction Pattern (DP) datasets, termed LAT-PCA (Local Automatic Thresholding - Principal Component Analysis). This approach enhances the established PCA algorithm by partitioning the 4D dataset (a 2D map of 2D DPs) into localized windows. Within these windows, PCA identifies a basis where the physical signal predominantly resides in the higher-order principal components. By thresholding lower-order components, the method effectively reduces noise while retaining the essential features of the DPs. The locality of the approach, focusing on small windows, enhances computational efficiency and aligns with the localized nature of the crystallographic grain signals in ASTAR. The automatic aspect of the method employs a theoretical pure noise distribution, i.e. a Marchenko-Pastur Distribution, to set a threshold, beyond which the components are mostly noise. The LAT-PCA method offers significant reductions in acquisition and post-processing times. With denoised data, selecting the correct parameters for accurate phase maps and grain orientations becomes more straightforward, facilitating robust quantitative grain analysis. Experiments performed on a silicon-germanium-carbon sample validate the method's efficacy. The sample was analyzed with varying acquisition times to produce a high signal-to-noise ratio reference dataset and a lower ratio test dataset. The LAT-PCA algorithm's denoising results on the test dataset were benchmarked against the reference, demonstrating considerable improvements and reliability. In summary, LAT-PCA is an effective, automatic solution for denoising TEM DP datasets. Its adaptability to different noise levels and local processing capability makes it a valuable tool for enhancing dataset quality and reducing the time required for data acquisition and analysis. This method can minimize acquisition time, conserve microscope usage, and reduce sample drift and deterioration, leading to more accurate characterizations with fewer deformation artifacts.

摘要

本文介绍了一种用于透射电子显微镜 - ASTAR™ 衍射图案(DP)数据集的新型去噪方法,称为LAT - PCA(局部自动阈值化 - 主成分分析)。该方法通过将4D数据集(2D DP的2D映射)划分为局部窗口来增强已有的PCA算法。在这些窗口内,PCA确定一个基,其中物理信号主要存在于高阶主成分中。通过对低阶成分进行阈值处理,该方法在保留DP基本特征的同时有效降低了噪声。该方法的局部性,专注于小窗口,提高了计算效率,并与ASTAR中晶体晶粒信号的局部性质相符合。该方法的自动方面采用理论纯噪声分布,即马尔琴科 - 帕斯特尔分布,来设置阈值,超过该阈值的成分大多为噪声。LAT - PCA方法显著减少了采集和后处理时间。有了去噪后的数据,为准确的相位图和晶粒取向选择正确的参数变得更加直接,便于进行可靠的定量晶粒分析。在硅锗碳样品上进行的实验验证了该方法的有效性。对该样品进行了不同采集时间的分析,以生成高信噪比参考数据集和低信噪比测试数据集。将LAT - PCA算法在测试数据集上的去噪结果与参考数据集进行基准比较,证明了其有显著改进和可靠性。总之,LAT - PCA是一种用于去噪透射电子显微镜DP数据集的有效自动解决方案。它对不同噪声水平的适应性和局部处理能力使其成为提高数据集质量以及减少数据采集和分析所需时间的有价值工具。该方法可以最小化采集时间,节省显微镜使用,并减少样品漂移和劣化,从而以更少的变形伪像实现更准确的表征。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验