Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
Magn Reson Med. 2021 Sep;86(3):1614-1632. doi: 10.1002/mrm.28752. Epub 2021 Apr 8.
To introduce, develop, and evaluate a novel denoising technique for diffusion MRI that leverages nonlinear redundancy in the data to boost the SNR while preserving signal information.
We exploit nonlinear redundancy of the dMRI data by means of kernel principal component analysis (KPCA), a nonlinear generalization of PCA to reproducing kernel Hilbert spaces. By mapping the signal to a high-dimensional space, a higher level of redundant information is exploited, thereby enabling better denoising than linear PCA. We implement KPCA with a Gaussian kernel, with parameters automatically selected from knowledge of the noise statistics, and validate it on realistic Monte Carlo simulations as well as with in vivo human brain submillimeter and low-resolution dMRI data. We also demonstrate KPCA denoising on multi-coil dMRI data.
SNR improvements up to 2.7 were obtained in real in vivo datasets denoised with KPCA, in comparison to SNR gains of up to 1.8 using a linear PCA denoising technique called Marchenko-Pastur PCA (MPPCA). Compared to gold-standard dataset references created from averaged data, we showed that lower normalized root mean squared error was achieved with KPCA compared to MPPCA. Statistical analysis of residuals shows that anatomical information is preserved and only noise is removed. Improvements in the estimation of diffusion model parameters such as fractional anisotropy, mean diffusivity, and fiber orientation distribution functions were also demonstrated.
Nonlinear redundancy of the dMRI signal can be exploited with KPCA, which allows superior noise reduction/SNR improvements than the MPPCA method, without loss of signal information.
介绍、开发和评估一种新的扩散磁共振成像去噪技术,该技术利用数据中的非线性冗余来提高信噪比,同时保留信号信息。
我们通过核主成分分析(KPCA)利用 dMRI 数据的非线性冗余,这是主成分分析(PCA)在再生核希尔伯特空间中的非线性推广。通过将信号映射到高维空间,可以利用更高水平的冗余信息,从而实现比线性 PCA 更好的去噪效果。我们使用具有自动从噪声统计知识中选择的参数的高斯核来实现 KPCA,并在真实的蒙特卡罗模拟以及体内人类大脑亚毫米和低分辨率 dMRI 数据上对其进行验证。我们还展示了 KPCA 在多通道 dMRI 数据上的去噪效果。
与使用 Marchenko-Pastur PCA(MPPCA)线性去噪技术相比,在真实的体内数据集去噪中,KPCA 可获得高达 2.7 的 SNR 提高,而 MPPCA 可获得高达 1.8 的 SNR 提高。与从平均数据创建的黄金标准数据集参考相比,我们表明 KPCA 实现了比 MPPCA 更低的归一化均方根误差。残差的统计分析表明,保留了解剖学信息,并且仅去除了噪声。还证明了扩散模型参数(如分数各向异性、平均扩散系数和纤维方向分布函数)的估计得到了改善。
可以利用 KPCA 利用 dMRI 信号的非线性冗余,与 MPPCA 方法相比,它可以实现更好的降噪/SNR 提高,而不会损失信号信息。