Suppr超能文献

基于结构低秩补丁矩阵逼近的扩散加权图像联合去噪。

Joint denoising of diffusion-weighted images via structured low-rank patch matrix approximation.

机构信息

Laboratory of Biomedical Imaging and Signal Processing, The University of Hong Kong, Hong Kong SAR, People's Republic of China.

Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong SAR, People's Republic of China.

出版信息

Magn Reson Med. 2022 Dec;88(6):2461-2474. doi: 10.1002/mrm.29407. Epub 2022 Aug 17.

Abstract

PURPOSE

To develop a joint denoising method that effectively exploits natural information redundancy in MR DWIs via low-rank patch matrix approximation.

METHODS

A denoising method is introduced to jointly reduce noise in DWI dataset by exploiting nonlocal self-similarity as well as local anatomical/structural similarity within multiple 2D DWIs acquired with the same anatomical geometry but different diffusion directions. Specifically, for each small 3D reference patch sliding within 2D DWI, nonlocal but similar patches are searched by matching image contents within entire DWI dataset and then structured into a patch matrix. The resulting patch matrices are denoised by enforcing low-rankness via weighted nuclear norm minimization and finally are back-distributed to DWI space. The proposed procedure was evaluated with simulated and in vivo brain diffusion tensor imaging (DTI) datasets and then compared to existing Marchenko-Pastur principal component analysis denoising method.

RESULTS

The proposed method achieved significant noise reduction while preserving structural details in all DWIs for both simulated and in vivo datasets. Quantitative evaluation of error maps demonstrated it consistently outperformed Marchenko-Pastur principal component analysis method. Further, the denoised DWIs led to substantially improved DTI parametric maps, exhibiting significantly less noise and revealing more microstructural details.

CONCLUSION

The proposed method denoises DWI dataset by utilizing both nonlocal self-similarity and local structural similarity within DWI dataset. This weighted nuclear norm minimization-based low-rank patch matrix denoising approach is effective and highly applicable to various diffusion MRI applications, including DTI as a postprocessing procedure.

摘要

目的

通过低秩补丁矩阵逼近,开发一种联合去噪方法,有效地利用磁共振扩散加权成像中的自然信息冗余。

方法

引入一种去噪方法,通过利用多幅二维扩散加权图像中的非局部自相似性以及局部解剖/结构相似性,共同降低扩散加权图像数据集的噪声,这些二维扩散加权图像是使用相同的解剖几何形状但不同的扩散方向采集的。具体来说,对于在二维 DWI 中滑动的每个小 3D 参考补丁,通过在整个 DWI 数据集内匹配图像内容来搜索非局部但相似的补丁,然后将其构建成补丁矩阵。通过加权核范数最小化来强制实现低秩性,对得到的补丁矩阵进行去噪,最后将其反向分配到 DWI 空间。该方法使用模拟和体内脑扩散张量成像(DTI)数据集进行了评估,并与现有的 Marchenko-Pastur 主成分分析去噪方法进行了比较。

结果

该方法在模拟和体内数据集的所有 DWIs 中都实现了显著的噪声降低,同时保留了结构细节。误差图的定量评估表明,该方法始终优于 Marchenko-Pastur 主成分分析方法。此外,去噪后的 DWIs 导致 DTI 参数图得到了极大的改善,表现出明显更少的噪声和更多的微观结构细节。

结论

该方法通过在 DWI 数据集中利用非局部自相似性和局部结构相似性来对 DWI 数据集进行去噪。这种基于加权核范数最小化的低秩补丁矩阵去噪方法是有效的,并且非常适用于各种扩散 MRI 应用,包括作为后处理过程的 DTI。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验