Suppr超能文献

MMF-NNs:用于脑网络的多模态多粒度融合神经网络及其在癫痫识别中的应用。

MMF-NNs: Multi-modal Multi-granularity Fusion Neural Networks for brain networks and its application to epilepsy identification.

机构信息

School of Artificial Intelligence and Computer Science, Nantong University, Nantong, 226019, China.

School of Computer and Software, Nanjing University of Information Science and Technology, Nanjing, 210044, China.

出版信息

Artif Intell Med. 2024 Nov;157:102990. doi: 10.1016/j.artmed.2024.102990. Epub 2024 Sep 30.

Abstract

Structural and functional brain networks are generated from two scan sequences of magnetic resonance imaging data, which can provide different perspectives for describing pathological changes caused by brain diseases. Recent studies found that fusing these two types of brain networks improves performance in brain disease identification. However, traditional fusion models combine these brain networks at a single granularity, ignoring the natural multi-granularity structure of brain networks that can be divided into the edge, node, and graph levels. To this end, this paper proposes a Multi-modal Multi-granularity Fusion Neural Networks (MMF-NNs) framework for brain networks, which integrates the features of the multi-modal brain network from global (i.e., graph-level) and local (i.e., edge-level and node-level) granularities to take full advantage of the topological information. Specifically, we design an interactive feature learning module at the local granularity to learn feature maps of structural and functional brain networks at the edge-level and the node-level, respectively. In that way, these two types of brain networks are fused during the feature learning process. At the global granularity, a multi-modal decomposition bilinear pooling module is designed to learn the graph-level joint representation of these brain networks. Experiments on real epilepsy datasets demonstrate that MMF-NNs are superior to several state-of-the-art methods in epilepsy identification.

摘要

结构和功能脑网络是从磁共振成像数据的两个扫描序列中生成的,它们可以为描述脑疾病引起的病理变化提供不同的视角。最近的研究发现,融合这两种类型的脑网络可以提高脑疾病识别的性能。然而,传统的融合模型在单一粒度上组合这些脑网络,忽略了脑网络的自然多粒度结构,可以将其分为边缘、节点和图三个层次。为此,本文提出了一种用于脑网络的多模态多粒度融合神经网络(MMF-NNs)框架,该框架从全局(即图级)和局部(即边缘级和节点级)粒度上整合多模态脑网络的特征,以充分利用拓扑信息。具体来说,我们在局部粒度上设计了一个交互特征学习模块,分别学习结构和功能脑网络的边缘级和节点级特征图。通过这种方式,在特征学习过程中融合这两种类型的脑网络。在全局粒度上,设计了一个多模态分解双线性池化模块,以学习这些脑网络的图级联合表示。在真实的癫痫数据集上的实验表明,MMF-NNs 在癫痫识别方面优于几种最先进的方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验