Suppr超能文献

用于年龄相关性黄斑变性早期诊断和监测的血清代谢物生物标志物。

Serum metabolite biomarkers for the early diagnosis and monitoring of age-related macular degeneration.

作者信息

Li Shengjie, Qiu Yichao, Li Yingzhu, Wu Jianing, Yin Ning, Ren Jun, Shao Mingxi, Yu Jian, Song Yunxiao, Sun Xinghuai, Gao Shunxiang, Cao Wenjun

机构信息

Department of Clinical Laboratory, Eye & ENT Hospital, Fudan University, Shanghai 200031, China; Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai 200031, China; NHC Key Laboratory of Myopia and Related Eye Diseases, Shanghai 200031, China; Key Laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences, Shanghai 200031, China; Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai 200031, China.

Department of Clinical Laboratory, Eye & ENT Hospital, Fudan University, Shanghai 200031, China.

出版信息

J Adv Res. 2025 Aug;74:443-454. doi: 10.1016/j.jare.2024.10.001. Epub 2024 Oct 5.

Abstract

INTRODUCTION

Age-related macular degeneration (AMD) is a leading cause of irreversible blindness worldwide, with significant challenges for early diagnosis and treatment.

OBJECTIVES

To identify new biomarkers that are important for the early diagnosis and monitoring of the severity/progression of AMD.

METHODS

We investigated the diagnostic and monitoring potential of blood metabolites in a cohort of 547 individuals (167 healthy controls, 240 individuals with other eye diseases as eye disease controls, and 140 individuals with AMD) from 2 centers over three phases: discovery phase 1, discovery phase 2, and an external validation phase. The samples were analyzed via a mass spectrometry-based, widely targeted metabolomic workflow. In discovery phases 1 and 2, we built a machine learning algorithm to predict the probability of AMD. In the external validation phase, we further confirmed the performance of the biomarker panel identified by the algorithm. We subsequently evaluated the performance of the identified biomarker panel in monitoring the progression and severity of AMD.

RESULTS

We developed a clinically specific three-metabolite panel (hypoxanthine, 2-furoylglycine, and 1-hexadecyl-2-azelaoyl-sn-glycero-3-phosphocholine) via five machine learning models. The random forest model effectively discriminated patients with AMD from patents in the other two groups and showed acceptable calibration (area under the curve (AUC) = 1.0; accuracy = 1.0) in both discovery phases 1 and 2. An independent validation phase confirmed the diagnostic model's efficacy (AUC = 0.962; accuracy = 0.88). The three-biomarker panel model demonstrated an AUC of 1.0 in differentiating the severity of AMD via RF machine learning, which was consistent across both the discovery and external validation phases. Additionally, the biomarker concentrations remained stable under repeated freeze-thaw cycles (P > 0.05).

CONCLUSIONS

This study reveals distinct metabolite variations in the serum of AMD patients, paving the way for the development of the first routine laboratory test for AMD.

摘要

引言

年龄相关性黄斑变性(AMD)是全球不可逆失明的主要原因,在早期诊断和治疗方面面临重大挑战。

目的

确定对AMD早期诊断及病情严重程度/进展监测至关重要的新生物标志物。

方法

我们在来自2个中心的547名个体(167名健康对照者、240名患有其他眼部疾病的个体作为眼病对照、140名AMD患者)队列中,分三个阶段研究血液代谢物的诊断及监测潜力:发现阶段1、发现阶段2和外部验证阶段。样本通过基于质谱的广泛靶向代谢组学工作流程进行分析。在发现阶段1和2,我们构建了一种机器学习算法来预测AMD的概率。在外部验证阶段,我们进一步确认了该算法识别的生物标志物组的性能。随后,我们评估了所识别的生物标志物组在监测AMD进展和严重程度方面的性能。

结果

我们通过五个机器学习模型开发了一种具有临床特异性的三代谢物组(次黄嘌呤、2-呋喃甲酰甘氨酸和1-十六烷基-2-壬二酰-sn-甘油-3-磷酸胆碱)。随机森林模型在发现阶段1和2均有效区分AMD患者与其他两组患者,并显示出可接受的校准度(曲线下面积(AUC)=1.0;准确率=1.0)。独立验证阶段证实了诊断模型的有效性(AUC=0.962;准确率=0.88)。三生物标志物组模型在通过随机森林机器学习区分AMD严重程度方面的AUC为1.0,在发现阶段和外部验证阶段均一致。此外,生物标志物浓度在反复冻融循环下保持稳定(P>0.05)。

结论

本研究揭示了AMD患者血清中独特的代谢物变化,为开发首个用于AMD的常规实验室检测铺平了道路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b03f/12302346/026df3746581/ga1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验