Suppr超能文献

基于深度学习的光学相干断层扫描(OCT)图像聚类在年龄相关性黄斑变性生物标志物发现中的应用(巅峰研究报告4)

Deep Learning-Based Clustering of OCT Images for Biomarker Discovery in Age-Related Macular Degeneration (PINNACLE Study Report 4).

作者信息

Holland Robbie, Kaye Rebecca, Hagag Ahmed M, Leingang Oliver, Taylor Thomas R P, Bogunović Hrvoje, Schmidt-Erfurth Ursula, Scholl Hendrik P N, Rueckert Daniel, Lotery Andrew J, Sivaprasad Sobha, Menten Martin J

机构信息

BioMedIA, Department of Computing, Imperial College London, London, United Kingdom.

Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom.

出版信息

Ophthalmol Sci. 2024 May 31;4(6):100543. doi: 10.1016/j.xops.2024.100543. eCollection 2024 Nov-Dec.

Abstract

PURPOSE

We introduce a deep learning-based biomarker proposal system for the purpose of accelerating biomarker discovery in age-related macular degeneration (AMD).

DESIGN

Retrospective analysis of a large data set of retinal OCT images.

PARTICIPANTS

A total of 3456 adults aged between 51 and 102 years whose OCT images were collected under the PINNACLE project.

METHODS

Our system proposes candidates for novel AMD imaging biomarkers in OCT. It works by first training a neural network using self-supervised contrastive learning to discover, without any clinical annotations, features relating to both known and unknown AMD biomarkers present in 46 496 retinal OCT images. To interpret the learned biomarkers, we partition the images into 30 subsets, termed clusters, that contain similar features. We conduct 2 parallel 1.5-hour semistructured interviews with 2 independent teams of retinal specialists to assign descriptions in clinical language to each cluster. Descriptions of clusters achieving consensus can potentially inform new biomarker candidates.

MAIN OUTCOME MEASURES

We checked if each cluster showed clear features comprehensible to retinal specialists, if they related to AMD, and how many described established biomarkers used in grading systems as opposed to recently proposed or potentially new biomarkers. We also compared their prognostic value for late-stage wet and dry AMD against an established clinical grading system and a demographic baseline model.

RESULTS

Overall, both teams independently identified clearly distinct characteristics in 27 of 30 clusters, of which 23 were related to AMD. Seven were recognized as known biomarkers used in established grading systems, and 16 depicted biomarker combinations or subtypes that are either not yet used in grading systems, were only recently proposed, or were unknown. Clusters separated incomplete from complete retinal atrophy, intraretinal from subretinal fluid, and thick from thin choroids, and, in simulation, outperformed clinically used grading systems in prognostic value.

CONCLUSIONS

Using self-supervised deep learning, we were able to automatically propose AMD biomarkers going beyond the set used in clinically established grading systems. Without any clinical annotations, contrastive learning discovered subtle differences between fine-grained biomarkers. Ultimately, we envision that equipping clinicians with discovery-oriented deep learning tools can accelerate the discovery of novel prognostic biomarkers.

FINANCIAL DISCLOSURES

Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.

摘要

目的

我们引入一种基于深度学习的生物标志物提议系统,旨在加速年龄相关性黄斑变性(AMD)的生物标志物发现。

设计

对大量视网膜光学相干断层扫描(OCT)图像数据集进行回顾性分析。

参与者

共有3456名年龄在51至102岁之间的成年人,其OCT图像是在PINNACLE项目下收集的。

方法

我们的系统在OCT中提议新的AMD成像生物标志物候选物。它的工作方式是首先使用自监督对比学习训练一个神经网络,以在没有任何临床注释的情况下,发现存在于46496张视网膜OCT图像中的与已知和未知AMD生物标志物相关的特征。为了解释所学习到的生物标志物,我们将图像划分为30个子集,称为聚类,每个聚类包含相似的特征。我们与2个独立的视网膜专家团队进行了2次并行的1.5小时半结构化访谈,以便用临床语言为每个聚类赋予描述。达成共识的聚类描述可能会为新的生物标志物候选物提供信息。

主要观察指标

我们检查每个聚类是否显示出视网膜专家能够理解的清晰特征、它们是否与AMD相关,以及有多少描述了分级系统中使用的既定生物标志物,而非最近提议的或潜在的新生物标志物。我们还将它们对晚期湿性和干性AMD的预后价值与既定的临床分级系统和人口统计学基线模型进行了比较。

结果

总体而言,两个团队在30个聚类中的27个中独立识别出了明显不同的特征,其中23个与AMD相关。7个被认为是既定分级系统中使用的已知生物标志物,16个描绘了分级系统中尚未使用、最近才提议或未知的生物标志物组合或亚型。聚类区分了不完全与完全视网膜萎缩、视网膜内与视网膜下液、厚脉络膜与薄脉络膜,并且在模拟中,其预后价值优于临床使用的分级系统。

结论

通过使用自监督深度学习,我们能够自动提议超越临床既定分级系统中所使用的那些AMD生物标志物。在没有任何临床注释的情况下,对比学习发现了细粒度生物标志物之间的细微差异。最终,我们设想为临床医生配备以发现为导向的深度学习工具可以加速新型预后生物标志物的发现。

财务披露

在本文末尾的脚注和披露中可能会找到专有或商业披露信息。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验