Suppr超能文献

基于多传感器驱动视觉信息融合的电机故障诊断

Motor fault diagnosis based on multisensor-driven visual information fusion.

作者信息

Long Zhuo, Guo Jinyuan, Ma Xiaoguang, Wu Gongping, Rao Zhimeng, Zhang Xiaofei, Xu Zhiyuan

机构信息

College of Electrical and Information Engineering, Changsha University of Science and Technology, Changsha, Hunan 410114, PR China.

College of Electrical and Information Engineering, Hunan University, Changsha, Hunan 410082, PR China.

出版信息

ISA Trans. 2024 Dec;155:524-535. doi: 10.1016/j.isatra.2024.09.024. Epub 2024 Sep 24.

Abstract

To need of accurate motor fault diagnosis in industrial system, we propose a fault diagnosis framework that utilizes motor current and electromagnetic signals, combining them with a self-attention-enhanced capsule network for enhanced signal analysis and accuracy. Firstly, the original signal extracted by multiple sensors is constructed into a symmetric point mode (SDP) image, and the visual fault information of different sensors and fusion signals of different motion health states are obtained by the proposed multi-channel image fusion method. Then, the capsule network, combined with self-attention, extracts spatial features from the high-dimensional tensor of the multi-channel fused image for adaptive recognition and extraction. Subsequently, advanced feature vector information is obtained through softmax for diagnosis. Diagnosis results of several datasets indicate that the developed diagnosis framework with compressed image information can availably identify 8 kinds of motor fault states under various loads, and the fault diagnosis rate is as high as 99.95 %, it is helpful for low cost and high-speed diagnosis of motors. In addition, by learning multiple sensor signals in the same state, it obtains stronger robustness and effectiveness than a single signal model.

摘要

针对工业系统中准确的电机故障诊断需求,我们提出了一种故障诊断框架,该框架利用电机电流和电磁信号,并将它们与自注意力增强胶囊网络相结合,以增强信号分析和提高诊断准确性。首先,将多个传感器提取的原始信号构建成对称点模式(SDP)图像,并通过所提出的多通道图像融合方法获得不同传感器的视觉故障信息以及不同运动健康状态的融合信号。然后,胶囊网络结合自注意力,从多通道融合图像的高维张量中提取空间特征,用于自适应识别和提取。随后,通过softmax获得高级特征向量信息以进行诊断。几个数据集的诊断结果表明,所开发的具有压缩图像信息的诊断框架能够在各种负载下有效识别8种电机故障状态,故障诊断率高达99.95%,有助于电机的低成本和高速诊断。此外,通过学习相同状态下的多个传感器信号,它比单信号模型具有更强的鲁棒性和有效性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验