Suppr超能文献

分析黏膜下浸润超过 200 微米的表浅食管癌的危险因素并构建预测模型。

Analyzing risk factors and constructing a predictive model for superficial esophageal carcinoma with submucosal infiltration exceeding 200 micrometers.

机构信息

Department of Gastroenterology, Digestive endoscopy center, The Affiliated Hospital of North Sichuan Medical College, Nanchong, 63700, Sichuan, China.

出版信息

BMC Gastroenterol. 2024 Oct 6;24(1):350. doi: 10.1186/s12876-024-03442-1.

Abstract

OBJECTIVE

Submucosal infiltration of less than 200 μm is considered an indication for endoscopic surgery in cases of superficial esophageal cancer and precancerous lesions. This study aims to identify the risk factors associated with submucosal infiltration exceeding 200 micrometers in early esophageal cancer and precancerous lesions, as well as to establish and validate an accompanying predictive model.

METHODS

Risk factors were identified through least absolute shrinkage and selection operator (LASSO) and multivariate logistic regression. Various machine learning (ML) classification models were tested to develop and evaluate the most effective predictive model, with Shapley Additive Explanations (SHAP) employed for model visualization.

RESULTS

Predictive factors for early esophageal invasion into the submucosa included endoscopic ultrasonography or magnifying endoscopy> SM1(P<0.001,OR = 3.972,95%CI 2.161-7.478), esophageal wall thickening(P<0.001,OR = 12.924,95%CI,5.299-33.96), intake of pickled foods(P=0.04,OR = 1.837,95%CI,1.03-3.307), platelet-lymphocyte ratio(P<0.001,OR = 0.284,95%CI,0.137-0.556), tumor size(P<0.027,OR = 2.369,95%CI,1.128-5.267), the percentage of circumferential mucosal defect(P<0.001,OR = 5.286,95%CI,2.671-10.723), and preoperative pathological type(P<0.001,OR = 4.079,95%CI,2.254-7.476). The logistic regression model constructed from the identified risk factors was found to be the optimal model, demonstrating high efficacy with an area under the curve (AUC) of 0.922 in the training set, 0.899 in the validation set, and 0.850 in the test set.

CONCLUSION

A logistic regression model complemented by SHAP visualizations effectively identifies early esophageal cancer reaching 200 micrometers into the submucosa.

摘要

目的

在早期食管癌和癌前病变的情况下,将黏膜下浸润小于 200μm 视为内镜手术的指征。本研究旨在确定与早期食管癌和癌前病变黏膜下浸润超过 200 微米相关的危险因素,并建立和验证一个伴随的预测模型。

方法

通过最小绝对值收缩和选择算子(LASSO)和多变量逻辑回归确定危险因素。测试了各种机器学习(ML)分类模型,以开发和评估最有效的预测模型,并使用 Shapley Additive Explanations(SHAP)进行模型可视化。

结果

预测早期食管侵犯黏膜下的因素包括内镜超声或放大内镜>SM1(P<0.001,OR=3.972,95%CI 2.161-7.478),食管壁增厚(P<0.001,OR=12.924,95%CI,5.299-33.96),腌制食品摄入(P=0.04,OR=1.837,95%CI,1.03-3.307),血小板-淋巴细胞比值(P<0.001,OR=0.284,95%CI,0.137-0.556),肿瘤大小(P<0.027,OR=2.369,95%CI,1.128-5.267),环形黏膜缺损的百分比(P<0.001,OR=5.286,95%CI,2.671-10.723),和术前病理类型(P<0.001,OR=4.079,95%CI,2.254-7.476)。从确定的危险因素构建的逻辑回归模型被发现是最优模型,在训练集、验证集和测试集中的曲线下面积(AUC)分别为 0.922、0.899 和 0.850,显示出较高的疗效。

结论

SHAP 可视化补充的逻辑回归模型可有效识别早期食管癌浸润黏膜下 200 微米。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/867e/11457335/7ae56b2d9543/12876_2024_3442_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验