Huang Lunjie, Pu Hongbin, Sun Da-Wen
School of Food Science and Engineering, South China University of Technology, Guangzhou, 510641, China.
Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, China.
Small. 2024 Dec;20(51):e2407747. doi: 10.1002/smll.202407747. Epub 2024 Oct 6.
The heterogeneous and dynamic microenvironment of biofilms complicates bacterial infection treatment. Nanozyme catalytic therapy has recently been promising in treating biofilm infections. However, active nanozymes designed with the required precision targeting the biofilm microenvironment are lacking. This work proposes a spatiotemporally guided single-atom bionanozyme (BioSAzyme) for targeted antibiofilm therapy based on protein engineering of copper single-atom nanozyme (Cu SAzyme). The Cu SAzyme, synthesized via a novel mechanochemistry-assisted method, features highly accessible Cu-N active sites exposed on 2D N-doped carbon, exhibiting excellent triple enzyme-like activities according to experimental results and density functional theory calculations. Inheriting biofunctionality from both glucose oxidase and concanavalin A, BioSAzyme can localize the biofilm glycocalyx and catalyze endogenous glucose into H₂O₂ and gluconic acid, thus triggering multiplex cascade reactions with pH self-adaption to consume glucose and glutathione and generate •OH radicals. This spatiotemporally guided bionanocatalytic agent effectively inhibits E. coli O157: H7 and methicillin-resistant S. aureus biofilms in vitro and in vivo. Taking together, this work opens up new avenues for the rational design of single-atom nanozymes for precise antibiofilm therapy.
生物膜异质性和动态的微环境使细菌感染治疗变得复杂。纳米酶催化疗法最近在治疗生物膜感染方面很有前景。然而,缺乏经过精确设计以靶向生物膜微环境的活性纳米酶。这项工作基于铜单原子纳米酶(Cu SAzyme)的蛋白质工程,提出了一种用于靶向抗生物膜治疗的时空引导单原子生物纳米酶(BioSAzyme)。通过一种新型机械化学辅助方法合成的Cu SAzyme,其二维氮掺杂碳上暴露有高度可及的Cu-N活性位点,根据实验结果和密度泛函理论计算,表现出优异的类三酶活性。BioSAzyme继承了葡萄糖氧化酶和伴刀豆球蛋白A的生物功能,可定位生物膜糖萼并将内源性葡萄糖催化为H₂O₂和葡萄糖酸,从而引发具有pH自适应的多重级联反应,消耗葡萄糖和谷胱甘肽并产生•OH自由基。这种时空引导的生物纳米催化剂在体外和体内均能有效抑制大肠杆菌O157:H7和耐甲氧西林金黄色葡萄球菌生物膜。综上所述,这项工作为合理设计用于精确抗生物膜治疗的单原子纳米酶开辟了新途径。