Duan Jiayao, Xiao Mingfei, Zhu Genming, Chen Junxin, Hou Huiqing, Gámez-Valenzuela Sergio, Zelewski Szymon J, Dai Linjie, Tao Xudong, Ran Chong, Jay Nathan, Lin Yuze, Guo Xugang, Yue Wan
State Key Laboratory of Optoelectronic Materials and Technologies, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China.
The Microsystem Research Center, Department of Instruments Science and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
ACS Nano. 2024 Oct 15;18(41):28070-28080. doi: 10.1021/acsnano.4c07219. Epub 2024 Oct 6.
Advanced n-type organic electrochemical transistors (OECTs) play an important part in bioelectronics, facilitating the booming of complementary circuits-based biosensors. This necessitates the utilization of both n-type and p-type organic mixed ionic-electronic conductors (OMIECs) exhibiting a balanced performance. However, the observed subpar electron charge transport ability in most n-type OMIECs presents a significant challenge to the overall functionality of the circuits. In response to this issue, we achieve high-performance OMIECs by leveraging a series of fused electron-deficient monodisperse oligomers with mixed alkyl and glycol chains. Through molecular ordering manipulation by optimizing of their alkyl side chains, we attained a record-breaking OECT electron mobility of 0.62 cm/(V s) and μC* of 63.2 F/(cm V s) for bgTNR-3DT with symmetrical alkyl chains. Notably, the bgTNR-3DT film also exhibits the highest structural ordering, smallest energetic disorder, and the lowest trap density among the series, potentially explaining its ideal charge transport property. Additionally, we demonstrate an organic inverter incorporating bgTNR-3DT OECTs with a gain above 30, showcasing the material's potential for constructing organic circuits. Our findings underscore the indispensable role of alkyl chain optimization in the evolution of prospective high performance OMIECs for constructing advanced organic complementary circuits.
先进的n型有机电化学晶体管(OECTs)在生物电子学中发挥着重要作用,推动了基于互补电路的生物传感器的蓬勃发展。这就需要同时利用具有平衡性能的n型和p型有机混合离子-电子导体(OMIECs)。然而,在大多数n型OMIECs中观察到的电子电荷传输能力欠佳,这对电路的整体功能构成了重大挑战。针对这一问题,我们通过利用一系列具有混合烷基和二醇链的稠合缺电子单分散低聚物,实现了高性能的OMIECs。通过优化其烷基侧链进行分子有序调控,我们获得了具有对称烷基链的bgTNR-3DT的创纪录OECT电子迁移率0.62 cm/(V s)和μC*为63.2 F/(cm V s)。值得注意的是,bgTNR-3DT薄膜在该系列中还表现出最高的结构有序性、最小的能量无序性和最低的陷阱密度,这可能解释了其理想的电荷传输特性。此外,我们展示了一种包含bgTNR-3DT OECTs的有机逆变器,增益超过30,展示了该材料在构建有机电路方面的潜力。我们的研究结果强调了烷基链优化在开发用于构建先进有机互补电路的高性能OMIECs过程中不可或缺的作用。