Lombardo Zane, Mukerji Ishita
Department of Molecular Biology and Biochemistry, Molecular Biophysics Program, Wesleyan University, 52 Lawn Ave, Middletown, Connecticut 06459, USA.
Trends Photochem Photobiol. 2023;22:85-102.
DNA Holliday Junction (HJ) formation and resolution is requisite for maintaining genomic stability in processes such as replication fork reversal and double-strand break repair. If HJs are not resolved, chromosome disjunction and aneuploidy result, hallmarks of tumor cells. To understand the structural features that lead to processing of these four-stranded joint molecule structures, we seek to identify structural and dynamic features unique to the central junction core. We incorporated the fluorescent guanine analog 6-methylisoxanthopterin (6-MI) at ten different locations throughout a model HJ structure to obtain site-specific information regarding the structure and dynamics of bases relative to those in a comparable sequence context in duplex DNA. These comparisons were accomplished through measuring fluorescence lifetime, relative brightness, fluorescence anisotropy, and quenching assays. These time-resolved and steady-state fluorescence measurements demonstrate that the structural distortions imposed by strand crossing result in increased solvent exposure, less stacking of bases and greater extrahelical nature of bases within the junction core. The 6-MI base analogs in the junction reflect these structural changes through an increase in intensity relative to those in the duplex. Molecular dynamics simulations performed using a model HJ indicate that the primary sources of deformation are in the shift and twist parameters of the bases at the central junction step. These results suggest that junction-binding proteins may use the unique structure and dynamics of the bases at the core for recognition.
DNA霍利迪连接体(HJ)的形成与解离对于在复制叉逆转和双链断裂修复等过程中维持基因组稳定性是必不可少的。如果HJ不能解离,就会导致染色体分离和非整倍体形成,这是肿瘤细胞的特征。为了了解导致这些四链连接分子结构加工的结构特征,我们试图识别中央连接体核心特有的结构和动态特征。我们在一个模型HJ结构的十个不同位置掺入了荧光鸟嘌呤类似物6-甲基异黄蝶呤(6-MI),以获取关于碱基结构和动力学的位点特异性信息,并与双链DNA中可比序列背景下的碱基进行比较。这些比较是通过测量荧光寿命、相对亮度、荧光各向异性和猝灭测定来完成的。这些时间分辨和稳态荧光测量结果表明,链交叉所造成的结构扭曲导致溶剂暴露增加、碱基堆积减少以及连接体核心内碱基的额外螺旋性质增强。连接体中的6-MI碱基类似物通过相对于双链中的那些碱基强度增加来反映这些结构变化。使用模型HJ进行的分子动力学模拟表明,变形的主要来源在于中央连接步骤处碱基的位移和扭转参数。这些结果表明,连接体结合蛋白可能利用核心处碱基独特的结构和动力学进行识别。