Farias Fellipe F S, Mittersteiner Mateus, Kieling Amanda M, Lima Priscila S V, Weimer Gustavo H, Bonacorso Helio G, Zanatta Nilo, Martins Marcos A P
Núcleo de Química de Heterociclos (NUQUIMHE), Department of Chemistry, Federal University of Santa Maria (UFSM), 97105-900 Santa Maria, Rio Grande do Sul, Brazil.
ACS Org Inorg Au. 2024 Sep 5;4(5):557-570. doi: 10.1021/acsorginorgau.4c00057. eCollection 2024 Oct 2.
Pyrimidinone scaffolds are present in a wide array of molecules with synthetic and pharmacological utility. The inherent properties of these compounds may be attributed to intermolecular interactions analogous to the interactions that molecules tend to establish with active sites. Pyrimidinones and their fused derivatives have garnered significant interest due to their structural features, which resemble nitrogenous bases, the foundational building blocks of DNA and RNA. Similarly, pyrimidinones are predisposed to forming N-H···O hydrogen bonds akin to nitrogenous bases. Given this context, this study explored the supramolecular features and the predisposition to form hydrogen bonds in a series of 18 substituted 4-(trihalomethyl)-2(1)-pyrimidinones. The formation of hydrogen bonds was observed in solution via nuclear magnetic resonance (NMR) spectroscopy experiments, and subsequently confirmed in the crystalline solid state. Hence, the 18 compounds were crystallized through crystallization assays by slow solvent evaporation, followed by single-crystal X-ray diffraction (SC-XRD). The supramolecular cluster demarcation was employed to evaluate all intermolecular interactions, and all crystalline structures exhibited robust hydrogen bonds, with an average energy of approximately -21.64 kcal mol (∼19% of the total stabilization energy of the supramolecular clusters), irrespective of the substituents at positions 4, 5, or 6 of the pyrimidinone core. To elucidate the nature of these hydrogen bonds, an analysis based on the quantum theory of atoms in molecules (QTAIM) revealed that the predominant intermolecular interactions are N-H···O (average of -16.55 kcal mol) and C-H···O (average of -6.48 kcal mol). Through proposing crystallization mechanisms based on molecular stabilization energy data and contact areas between molecules and employing the supramolecular cluster and retrocrystallization concepts, it was determined that altering the halogen (F/Cl) at position 4 of the pyrimidinone nucleus modifies the crystallization mechanism pathway. Notably, the hydrogen bonds present in the initial proposed steps were confirmed by H NMR experiments using concentration-dependent techniques.
嘧啶酮骨架存在于众多具有合成和药理用途的分子中。这些化合物的固有性质可能归因于分子间相互作用,类似于分子与活性位点倾向于建立的相互作用。嘧啶酮及其稠合衍生物因其结构特征而备受关注,其结构类似于含氮碱基,即DNA和RNA的基本组成部分。同样,嘧啶酮易于形成类似于含氮碱基的N-H···O氢键。在此背景下,本研究探索了一系列18种取代的4-(三卤甲基)-2(1)-嘧啶酮中的超分子特征和形成氢键的倾向。通过核磁共振(NMR)光谱实验在溶液中观察到氢键的形成,随后在晶体固态中得到证实。因此,通过缓慢溶剂蒸发的结晶试验使这18种化合物结晶,随后进行单晶X射线衍射(SC-XRD)。采用超分子簇划分来评估所有分子间相互作用,并且所有晶体结构都表现出强大的氢键,平均能量约为-21.64千卡/摩尔(约占超分子簇总稳定能量的19%),无论嘧啶酮核心4、5或6位的取代基如何。为了阐明这些氢键的性质,基于分子中原子的量子理论(QTAIM)的分析表明,主要的分子间相互作用是N-H···O(平均-16.55千卡/摩尔)和C-H···O(平均-6.48千卡/摩尔)。通过基于分子稳定能量数据和分子间接触面积提出结晶机制,并采用超分子簇和逆结晶概念,确定改变嘧啶酮核4位的卤素(F/Cl)会改变结晶机制途径。值得注意的是,最初提出步骤中存在的氢键通过使用浓度依赖技术的1H NMR实验得到证实。