Suppr超能文献

基于人工一碳延伸循环从L-赖氨酸高效生物生产1,6-己二胺

Novel Bioproduction of 1,6-Hexamethylenediamine from l-Lysine Based on an Artificial One-Carbon Elongation Cycle.

作者信息

Xiao Kaixing, Wang Dan, Liu Xuemei, Kang Yaqi, Luo Ruoshi, Hu Lin, Peng Zhiyao

机构信息

Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, P. R. China.

出版信息

ACS Omega. 2024 Sep 17;9(39):40970-40979. doi: 10.1021/acsomega.4c06289. eCollection 2024 Oct 1.

Abstract

1,6-hexamethylenediamine (HMD) is an important precursor for nylon-66 material synthesis, while research on the bioproduction of HMD has been relatively scarce in scientific literature. As concerns about climate change, environmental pollution, and the depletion of fossil fuel reserves continue to grow, the significance of producing fundamental chemicals from renewable sources is becoming increasingly prominent. In recent investigations, the bioproduction of HMD from adipic acid has been reported but with lingering challenges concerning costly raw materials and low yields. Here, we have undertaken the reconstruction of the HMD synthetic pathway within , which was constituted with l-lysine α-oxidase (), , α-ketoacid decarboxylase (), and transaminases (), leveraging a carbon chain extension module and a metabolic pathway of transaminase-decarboxylase cascade catalysis within the strain WD20, which successfully produce 46.7 ± 2.0 mg/L HMD. To increase the cascade activity and create a higher tolerance to external environmental disturbance for l-lysine to convert into HMD, another two enzymes d-alanine aminotransferase (Dat) and alpha-ketoacid decarboxylase (KdcA) were introduced into WD21 to provide flux flexibility for α-ketoacid metabolization, which was named "Smart-net metabolic engineering" in our research, and high-efficiency synthesis of HMD utilizing l-lysine as the substrate has been successfully achieved. Finally, we established a + 1C bioconversion multienzyme cascade catalyzing up to 65% conversion of l-lysine to HMD. Notably, our fermentation process yielded an impressive 213.5 ± 8.7 mg/L, representing the highest reported yield to date for the bioproduction of HMD from l-lysine.

摘要

1,6 - 己二胺(HMD)是尼龙 - 66材料合成的重要前体,然而在科学文献中,关于HMD生物合成的研究相对较少。随着对气候变化、环境污染和化石燃料储备枯竭的担忧持续加剧,从可再生资源生产基础化学品的重要性日益凸显。在最近的研究中,已报道了由己二酸生物合成HMD的情况,但在原材料成本高和产量低方面仍存在挑战。在此,我们利用菌株WD20中的碳链延伸模块和转氨酶 - 脱羧酶级联催化代谢途径,在其内部重建了由L - 赖氨酸α - 氧化酶、α - 酮酸脱羧酶和转氨酶组成的HMD合成途径,成功生产出46.7±2.0mg/L的HMD。为了提高级联活性并对L - 赖氨酸转化为HMD创造更高的外部环境干扰耐受性,另外两种酶D - 丙氨酸转氨酶(Dat)和α - 酮酸脱羧酶(KdcA)被引入WD21,为α - 酮酸代谢提供通量灵活性,这在我们的研究中被称为“智能网络代谢工程”,并成功实现了以L - 赖氨酸为底物高效合成HMD。最后,我们建立了一个 + 1C生物转化多酶级联反应,可将L - 赖氨酸高达65%转化为HMD。值得注意的是,我们的发酵过程产生了令人印象深刻的数据,即213.5±8.7mg/L,这是迄今为止报道的从L - 赖氨酸生物合成HMD的最高产量。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验