Suppr超能文献

持久超图同调与持久超图拉普拉斯算子

PERSISTENT HYPERDIGRAPH HOMOLOGY AND PERSISTENT HYPERDIGRAPH LAPLACIANS.

作者信息

Chen Dong, Liu Jian, Wu Jie, Wei Guo-Wei

机构信息

Department of Mathematics, Michigan State University, MI, 48824, USA.

Mathematical Science Research Center, Chongqing University of Technology, Chongqing 400054, China.

出版信息

Found Data Sci. 2023 Dec;5(4):558-588. doi: 10.3934/fods.2023010.

Abstract

Hypergraphs are useful mathematical models for describing complex relationships among members of a structured graph, while hyperdigraphs serve as a generalization that can encode asymmetric relationships in the data. However, obtaining topological information directly from hyperdigraphs remains a challenge. To address this issue, we introduce hyperdigraph homology in this work. We also propose topological hyperdigraph Laplacians, which can extract both harmonic spectra and non-harmonic spectra from directed and internally organized data. Moreover, we introduce persistent hyperdigraph homology and persistent hyperdigraph Laplacians through filtration, enabling the capture of topological persistence and homotopic shape evolution of directed and structured data across multiple scales. The proposed methods offer new multiscale algebraic topology tools for topological data analysis.

摘要

超图是用于描述结构化图中成员之间复杂关系的有用数学模型,而超有向图则是一种泛化形式,可对数据中的不对称关系进行编码。然而,直接从超有向图中获取拓扑信息仍然是一个挑战。为了解决这个问题,我们在这项工作中引入了超有向图同调。我们还提出了拓扑超有向图拉普拉斯算子,它可以从有向且内部组织的数据中提取调和谱和非调和谱。此外,我们通过过滤引入了持久超有向图同调与持久超有向图拉普拉斯算子,从而能够在多个尺度上捕捉有向和结构化数据的拓扑持久性和同伦形状演化。所提出的方法为拓扑数据分析提供了新的多尺度代数拓扑工具。

相似文献

1
PERSISTENT HYPERDIGRAPH HOMOLOGY AND PERSISTENT HYPERDIGRAPH LAPLACIANS.
Found Data Sci. 2023 Dec;5(4):558-588. doi: 10.3934/fods.2023010.
2
PERSISTENT PATH LAPLACIAN.
Found Data Sci. 2023 Mar;5(1):26-55. doi: 10.3934/fods.2022015.
3
HOMOTOPY CONTINUATION FOR THE SPECTRA OF PERSISTENT LAPLACIANS.
Found Data Sci. 2021 Dec;3(4):677-700. doi: 10.3934/fods.2021017.
5
HERMES: PERSISTENT SPECTRAL GRAPH SOFTWARE.
Found Data Sci. 2021 Mar;3(1):67-97. doi: 10.3934/fods.2021006.
6
Persistent spectral graph.
Int J Numer Method Biomed Eng. 2020 Sep;36(9):e3376. doi: 10.1002/cnm.3376. Epub 2020 Aug 17.
7
CHATGPT FOR COMPUTATIONAL TOPOLOGY.
Found Data Sci. 2024 Jun;6(2):221-250. doi: 10.3934/fods.2024009.
8
Biomolecular Topology: Modelling and Analysis.
Acta Math Sin Engl Ser. 2022;38(10):1901-1938. doi: 10.1007/s10114-022-2326-5. Epub 2022 Oct 15.
9
Evolutionary homology on coupled dynamical systems with applications to protein flexibility analysis.
J Appl Comput Topol. 2020 Dec;4(4):481-507. doi: 10.1007/s41468-020-00057-9. Epub 2020 Jul 29.

引用本文的文献

1
Multiscale topology-enabled structure-to-sequence transformer for protein-ligand interaction predictions.
Nat Mach Intell. 2024 Jul;6(7):799-810. doi: 10.1038/s42256-024-00855-1. Epub 2024 Jun 21.
2
A review of transformer models in drug discovery and beyond.
J Pharm Anal. 2025 Jun;15(6):101081. doi: 10.1016/j.jpha.2024.101081. Epub 2024 Aug 30.
3
4
Persistent Directed Flag Laplacian (PDFL)-Based Machine Learning for Protein-Ligand Binding Affinity Prediction.
J Chem Theory Comput. 2025 Apr 22;21(8):4276-4285. doi: 10.1021/acs.jctc.5c00074. Epub 2025 Apr 5.
5
PERSISTENT DIRAC OF PATHS ON DIGRAPHS AND HYPERGRAPHS.
Found Data Sci. 2024 Jun;6(2):124-153. doi: 10.3934/fods.2024001.
6
Persistent Mayer Dirac.
J Phys Complex. 2024 Dec 1;5(4):045005. doi: 10.1088/2632-072X/ad83a5. Epub 2024 Oct 17.
7
CHATGPT FOR COMPUTATIONAL TOPOLOGY.
Found Data Sci. 2024 Jun;6(2):221-250. doi: 10.3934/fods.2024009.
8
Preventing future zoonosis: SARS-CoV-2 mutations enhance human-animal cross-transmission.
Comput Biol Med. 2024 Nov;182:109101. doi: 10.1016/j.compbiomed.2024.109101. Epub 2024 Sep 6.
9
K-nearest-neighbors induced topological PCA for single cell RNA-sequence data analysis.
Comput Biol Med. 2024 Jun;175:108497. doi: 10.1016/j.compbiomed.2024.108497. Epub 2024 Apr 24.
10
Analyzing Single Cell RNA Sequencing with Topological Nonnegative Matrix Factorization.
J Comput Appl Math. 2024 Aug 1;445. doi: 10.1016/j.cam.2024.115842. Epub 2024 Feb 19.

本文引用的文献

1
PERSISTENT PATH LAPLACIAN.
Found Data Sci. 2023 Mar;5(1):26-55. doi: 10.3934/fods.2022015.
2
Persistent topological Laplacian analysis of SARS-CoV-2 variants.
J Comput Biophys Chem. 2023 Aug;22(5):569-587. doi: 10.1142/s2737416523500278. Epub 2023 Jun 8.
3
Persistent spectral theory-guided protein engineering.
Nat Comput Sci. 2023 Feb;3(2):149-163. doi: 10.1038/s43588-022-00394-y. Epub 2023 Feb 20.
4
Persistent Dirac for molecular representation.
Sci Rep. 2023 Jul 11;13(1):11183. doi: 10.1038/s41598-023-37853-z.
5
ASPECTS OF TOPOLOGICAL APPROACHES FOR DATA SCIENCE.
Found Data Sci. 2022 Jun;4(2):165-216. doi: 10.3934/fods.2022002.
6
Path Topology in Molecular and Materials Sciences.
J Phys Chem Lett. 2023 Feb 2;14(4):954-964. doi: 10.1021/acs.jpclett.2c03706. Epub 2023 Jan 23.
7
Persistent Laplacian projected Omicron BA.4 and BA.5 to become new dominating variants.
Comput Biol Med. 2022 Dec;151(Pt A):106262. doi: 10.1016/j.compbiomed.2022.106262. Epub 2022 Nov 2.
9
EVOLUTIONARY DE RHAM-HODGE METHOD.
Discrete Continuous Dyn Syst Ser B. 2021 Jul;26(7):3785-3821. doi: 10.3934/dcdsb.2020257.
10
HERMES: PERSISTENT SPECTRAL GRAPH SOFTWARE.
Found Data Sci. 2021 Mar;3(1):67-97. doi: 10.3934/fods.2021006.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验