School of Advanced Materials, Peking University, Shenzhen Graduate School, Shenzhen518055, China.
Department of Mathematics, Michigan State University, East Lansing, Michigan48824, United States.
J Phys Chem Lett. 2023 Feb 2;14(4):954-964. doi: 10.1021/acs.jpclett.2c03706. Epub 2023 Jan 23.
The structures of molecules and materials determine their functions. Understanding the structure and function relationship is the holy grail of molecular and materials sciences. However, the rational design of molecules and materials with desirable functions remains a grand challenge despite decades of efforts. A major obstacle is the lack of an intrinsic mathematical characteristic that attributes to a specific function. This work introduces persistent path topology (PPT) to effectively characterize directed networks extracted from functional units, such as constitutional isomers, cis-trans isomers, chiral molecules, Jahn-Teller isomerism, and high-entropy alloy catalysts. Path homology (PH) theory is utilized to decipher the role of mirror-symmetric sublattices that hinder the formation of periodic unit cells in amorphous solids. Topological perturbation analysis (TPA) is proposed to reveal the critical target in the blood coagulation system. The proposed topological tools can be directly applied to systems biology, omics sciences, topological materials, and machine learning study of molecular and materials sciences.
分子和材料的结构决定了它们的功能。理解结构和功能之间的关系是分子和材料科学的圣杯。然而,尽管已经付出了几十年的努力,具有理想功能的分子和材料的合理设计仍然是一个巨大的挑战。一个主要的障碍是缺乏内在的数学特征,而这种特征是与特定功能相关的。这项工作引入了持久路径拓扑(PPT),以有效地描述从功能单元(如构象异构体、顺反异构体、手性分子、 Jahn-Teller 互变和高熵合金催化剂)中提取的有向网络。路径同调(PH)理论被用来破译阻碍非晶固体中周期性单元形成的镜面对称亚晶格的作用。拓扑微扰分析(TPA)被提出以揭示血液凝固系统中的关键靶点。所提出的拓扑工具可以直接应用于系统生物学、组学科学、拓扑材料以及分子和材料科学的机器学习研究。