Suppr超能文献

基于钆贝葡胺增强 MRI 的深度学习与影像组学特征融合的预测模型用于肝细胞癌术后早期复发

A predictive model integrating deep and radiomics features based on gadobenate dimeglumine-enhanced MRI for postoperative early recurrence of hepatocellular carcinoma.

机构信息

Digital Medical Research Center, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China.

Shanghai Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention, Shanghai, 200032, China.

出版信息

Radiol Med. 2022 Mar;127(3):259-271. doi: 10.1007/s11547-021-01445-6. Epub 2022 Feb 7.

Abstract

PURPOSE

Hepatocellular carcinoma (HCC) is the most common liver cancer worldwide, and early recurrence of HCC after curative hepatic resection is indicative of poor prognoses. We aim to develop a predictive model for postoperative early recurrence of HCC based on deep and radiomics features from multi-phasic magnetic resonance imaging (MRI).

MATERIALS AND METHODS

A total of 472 HCC patients were included and divided into the training (n = 378) and validation (n = 94) cohorts in the retrospective study. We separately extracted radiomics features and deep features from eight phases of gadoxetic acid-enhanced MRI and utilized the least absolute shrinkage and selection operator logistic regression algorithm for feature selection and model construction. We integrated the selected two types of features into a combined model and established a radiomics model as well as a deep learning (DL) model for comparison.

RESULTS

In the training and validation cohorts, the combined model demonstrated better performance for stratifying patients at high risk of early recurrence (AUC of 0.911 and 0.840, accuracy of 0.779 and 0.777, sensitivity of 0.927 and 0.769, specificity 0.720 and 0.779) than the radiomics model (AUC of 0.740 and 0.780) and the DL model (AUC of 0.887 and 0.813).

CONCLUSION

The combined model integrating deep and radiomics features from multi-phasic MRI is efficient for noninvasively stratifying patients at high risk of early HCC recurrence after resection.

摘要

目的

肝细胞癌(HCC)是全球最常见的肝癌,HCC 根治性肝切除术后的早期复发提示预后不良。我们旨在开发一种基于多期磁共振成像(MRI)的深度学习和放射组学特征预测 HCC 术后早期复发的模型。

材料和方法

回顾性研究共纳入 472 例 HCC 患者,分为训练队列(n=378)和验证队列(n=94)。我们分别从钆塞酸增强 MRI 的 8 个时相提取放射组学特征和深度学习特征,并利用最小绝对收缩和选择算子逻辑回归算法进行特征选择和模型构建。我们将选择的两种类型的特征整合到一个联合模型中,并建立了放射组学模型和深度学习模型进行比较。

结果

在训练队列和验证队列中,联合模型在分层高复发风险的患者方面表现出更好的性能(AUC 为 0.911 和 0.840,准确性为 0.779 和 0.777,敏感性为 0.927 和 0.769,特异性为 0.720 和 0.779),优于放射组学模型(AUC 为 0.740 和 0.780)和深度学习模型(AUC 为 0.887 和 0.813)。

结论

该联合模型整合了多期 MRI 的深度学习和放射组学特征,可有效对术后早期 HCC 复发高风险患者进行分层。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验