Suppr超能文献

不同细胞类型在肿瘤微环境中的表达模式及其相互作用可预测乳腺癌患者对新辅助化疗的反应。

The expression patterns of different cell types and their interactions in the tumor microenvironment are predictive of breast cancer patient response to neoadjuvant chemotherapy.

作者信息

Dhruba Saugato Rahman, Sahni Sahil, Wang Binbin, Wu Di, Rajagopal Padma Sheila, Schmidt Yael, Shulman Eldad D, Sinha Sanju, Sammut Stephen-John, Caldas Carlos, Wang Kun, Ruppin Eytan

机构信息

Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.

Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.

出版信息

bioRxiv. 2024 Jun 14:2024.06.14.598770. doi: 10.1101/2024.06.14.598770.

Abstract

The tumor microenvironment (TME) is a complex ecosystem of diverse cell types whose interactions govern tumor growth and clinical outcome. While the TME's impact on immunotherapy has been extensively studied, its role in chemotherapy response remains less explored. To address this, we developed DECODEM (DEcoupling Cell-type-specific Outcomes using DEconvolution and Machine learning), a generic computational framework leveraging cellular deconvolution of to associate the gene expression of individual cell types in the TME with clinical response. Employing DECODEM to analyze the gene expression of breast cancer (BC) patients treated with neoadjuvant chemotherapy, we find that the gene expression of specific immune cells (, , ) and stromal cells (, , ) are highly predictive of chemotherapy response, going beyond that of the malignant cells. These findings are further tested and validated in a single-cell cohort of triple negative breast cancer. To investigate the possible role of immune cell-cell interactions (CCIs) in mediating chemotherapy response, we extended DECODEM to DECODEMi to identify such CCIs, validated in single-cell data. Our findings highlight the importance of active pre-treatment immune infiltration for chemotherapy success. The tools developed here are made publicly available and are applicable for studying the role of the TME in mediating response from readily available bulk tumor expression in a wide range of cancer treatments and indications.

摘要

肿瘤微环境(TME)是一个由多种细胞类型组成的复杂生态系统,其相互作用决定肿瘤生长和临床结果。虽然TME对免疫治疗的影响已得到广泛研究,但其在化疗反应中的作用仍有待深入探索。为解决这一问题,我们开发了DECODEM(使用反卷积和机器学习解耦细胞类型特异性结果),这是一个通用的计算框架,利用细胞反卷积将TME中单个细胞类型的基因表达与临床反应相关联。利用DECODEM分析接受新辅助化疗的乳腺癌(BC)患者的基因表达,我们发现特定免疫细胞(、、)和基质细胞(、、)的基因表达对化疗反应具有高度预测性,超过了恶性细胞。这些发现在三阴性乳腺癌的单细胞队列中得到进一步测试和验证。为了研究免疫细胞-细胞相互作用(CCIs)在介导化疗反应中的可能作用,我们将DECODEM扩展为DECODEMi以识别此类CCIs,并在单细胞数据中得到验证。我们的研究结果突出了治疗前活跃的免疫浸润对化疗成功的重要性。这里开发的工具已公开可用,适用于研究TME在介导多种癌症治疗和适应症中现成的肿瘤组织表达反应中的作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验