Myers Mallory L, Gallagher John R, Woolfork De'Marcus D, Khorrami Noah D, Park William B, Maldonado-Puga Samantha, Bohrnsen Eric, Schwarz Benjamin H, Alves Derron A, Bock Kevin W, Dearborn Altaira D, Harris Audray K
Structural Informatics Unit, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 50 South Drive, Room 6351, Bethesda, MD, USA 20892.
Protein Chemistry Section, Research and Technologies Branch, National Institute of Allergy and Infectious Diseases, Rocky Mountain Laboratories, National Institutes of Health, 903 South 4th Street, Hamilton, MT, USA 59840.
bioRxiv. 2024 Sep 16:2024.09.16.613335. doi: 10.1101/2024.09.16.613335.
Development of intranasal vaccines for respiratory viruses has gained popularity. However, currently only a live-attenuated influenza vaccine is FDA-approved for intranasal administration. Here, we focused on influenza virus as it circulates seasonally, has pandemic potential, and has vaccine formulations that present hemagglutinin (HA) in different structural arrangements. These display differences have not been correlated with induction of pan-H1 antibodies or shown to provide intranasal protection. Using electron microscopy, biochemistry and animal studies, we identified HA complexes arranged as lipid discs with multiple trimeric HAs displayed along the perimeter, termed spike nanobicelles (SNB). We utilized a structure-guided approach to synthesize in vitro assembled spiked nanobicelles (IA-SNB) from a classical 1934 H1N1 influenza virus. IA-SNBs elicited pan-H1 antibodies and provided protection against antigenically divergent H1N1 viruses via intranasal immunizations. Viral glycoprotein spikes displayed as SNBs could aid in combating antigenic variation and provide innovative intranasal vaccines to aid universal influenza vaccine development.
用于呼吸道病毒的鼻内疫苗的研发越来越受到关注。然而,目前美国食品药品监督管理局(FDA)仅批准了一种减毒活流感疫苗用于鼻内给药。在此,我们聚焦于流感病毒,因为它具有季节性传播、大流行潜力,并且其疫苗制剂中血凝素(HA)呈现不同的结构排列。这些结构差异与泛H1抗体的诱导未相关联,也未显示能提供鼻内保护作用。通过电子显微镜、生物化学和动物研究,我们鉴定出HA复合物排列成脂质盘状,多个三聚体HA沿周边排列,称为刺突纳米微囊(SNB)。我们采用结构导向方法,从1934年的经典H1N1流感病毒体外合成组装刺突纳米微囊(IA-SNB)。IA-SNB通过鼻内免疫引发了泛H1抗体,并提供了针对抗原性不同的H1N1病毒的保护。以SNB形式展示的病毒糖蛋白刺突可能有助于对抗抗原变异,并为通用流感疫苗的研发提供创新的鼻内疫苗。