Suppr超能文献

一种理解抑郁症中基于努力的决策的计算方法。

A computational approach to understanding effort-based decision-making in depression.

作者信息

Valton Vincent, Mkrtchian Anahit, Moses-Payne Madeleine, Gray Alan, Kieslich Karel, VanUrk Samantha, Samborska Veronika, Halahakoon Don Chamith, Manohar Sanjay G, Dayan Peter, Husain Masud, Roiser Jonathan P

机构信息

Institute of Cognitive Neuroscience, University College London, London, UK.

Division of Psychiatry and Max Planck Centre for Computational Psychiatry and Ageing Research, Queen Square Institute of Neurology, University College London, London, UK.

出版信息

bioRxiv. 2025 Apr 2:2024.06.17.599286. doi: 10.1101/2024.06.17.599286.

Abstract

OBJECTIVE

Motivational dysfunction is a core feature of depression, and can have debilitating effects on everyday function. However, it is unclear which disrupted cognitive processes underlie impaired motivation, and whether impairments persist following remission. Decision-making concerning exerting effort to obtain rewards offers a promising framework for understanding motivation, especially when examined with computational tools which can offer precise quantification of latent processes.

METHODS

Effort-based decision-making was assessed using the Apple Gathering Task, in which participants decide whether to exert effort via a grip-force device to obtain varying levels of reward; effort levels were individually calibrated and varied parametrically. We present a comprehensive computational analysis of decision-making, initially validating our model in healthy volunteers (N=67), before applying it in a case-control study including current (N=41) and remitted (N=46) unmedicated depressed individuals, and healthy volunteers with (N=36) and without (N=57) a family history of depression.

RESULTS

Four fundamental computational mechanisms that drive patterns of effort-based decisions, which replicated across samples, were identified: overall bias to accept effort challenges; reward sensitivity; and linear and quadratic effort sensitivity. Traditional model-agnostic analyses showed that both depressed groups showed lower willingness to exert effort. In contrast with previous findings, computational analysis revealed that this difference was primarily driven by lower effort acceptance bias, but not altered effort or reward sensitivity.

CONCLUSIONS

This work provides insight into the computational mechanisms underlying motivational dysfunction in depression. Lower willingness to exert effort could represent a trait-like factor contributing to symptoms, and might represent a fruitful target for treatment and prevention.

摘要

目的

动机功能障碍是抑郁症的核心特征,会对日常功能产生严重影响。然而,尚不清楚哪些认知过程的破坏是动机受损的基础,以及缓解后这些损伤是否持续存在。关于为获得奖励而付出努力的决策为理解动机提供了一个有前景的框架,尤其是使用能够对潜在过程进行精确量化的计算工具进行研究时。

方法

使用苹果收集任务评估基于努力的决策,参与者通过握力装置决定是否付出努力以获得不同水平的奖励;努力水平经过个体校准并进行参数化变化。我们对决策进行了全面的计算分析,首先在健康志愿者(N = 67)中验证我们的模型,然后将其应用于一项病例对照研究,该研究包括当前未服药的抑郁症患者(N = 41)和缓解期未服药的抑郁症患者(N = 46),以及有(N = 36)和无(N = 57)抑郁症家族史的健康志愿者。

结果

确定了驱动基于努力的决策模式的四种基本计算机制,这些机制在不同样本中均有重复:接受努力挑战的总体偏差;奖励敏感性;以及线性和二次努力敏感性。传统的与模型无关的分析表明,两个抑郁症组付出努力的意愿较低。与先前的研究结果相反,计算分析表明,这种差异主要是由较低的努力接受偏差驱动的,而不是努力或奖励敏感性的改变。

结论

这项工作深入了解了抑郁症中动机功能障碍背后的计算机制。付出努力的意愿较低可能是导致症状的一种特质性因素,并且可能是治疗和预防的一个有效靶点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bc27/11967634/1588489291fb/nihpp-2024.06.17.599286v3-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验