Suppr超能文献

用于识别神经退行性疾病的自动选择模型。

Automatic selection model to identify neurodegenerative diseases.

作者信息

Sánchez-DelaCruz Eddy, Loeza-Mejía Cecilia-Irene, Primero-Huerta César, Fuentes-Ramos Mirta

机构信息

Artificial Intelligence Laboratory, Tecnológico Nacional de México/Instituto Tecnológico Superior de Misantla, Veracruz, Mexico.

División de Ingeniería en Sistemas Computacionales, Tecnológico Nacional de México/Valle de Bravo, Valle de Bravo Mexico.

出版信息

Digit Health. 2024 Sep 27;10:20552076241284376. doi: 10.1177/20552076241284376. eCollection 2024 Jan-Dec.

Abstract

OBJECTIVE

This study evaluates machine learning algorithms' effectiveness in classifying Parkinson's disease and Huntington's disease based on biomarker data obtained non-invasively from patients and healthy controls.

METHODS

Datasets containing biomarker data (, , and values of accelerometers) from sensors were collected from Parkinson's disease, Huntington's disease patients, and healthy controls. An automatic selection model method was implemented for disease classification, using a unique Mexican database of human gait biomarkers, which we consider the only one of its kind. Random forest, random subspace method, and K-star algorithms were employed, with parameters optimized through an automated model selection.

RESULTS

The study achieved a 0.893 precision rate for Parkinson's disease and Huntington's disease using the random subspace method. The findings underscore the potential of machine learning techniques in medical diagnosis, particularly in neurological disorders.

CONCLUSION

The automatic selection model method demonstrated efficacy in classifying Parkinson's disease and Huntington's disease based on non-invasive biomarker data. This research contributes to advancing non-invasive diagnostic approaches in neurological disorders, highlighting the significance of machine learning in healthcare.

摘要

目的

本研究评估基于从患者和健康对照者非侵入性获取的生物标志物数据,机器学习算法在帕金森病和亨廷顿舞蹈病分类中的有效性。

方法

收集了包含来自帕金森病患者、亨廷顿舞蹈病患者和健康对照者的传感器生物标志物数据(加速度计的 、 和 值)的数据集。利用一个独特的墨西哥人类步态生物标志物数据库,实施了一种自动选择模型方法进行疾病分类,我们认为该数据库是此类数据库中的唯一。采用了随机森林、随机子空间方法和K星算法,并通过自动模型选择对参数进行了优化。

结果

使用随机子空间方法,该研究对帕金森病和亨廷顿舞蹈病的准确率达到了0.893。这些发现强调了机器学习技术在医学诊断中的潜力,尤其是在神经疾病方面。

结论

自动选择模型方法在基于非侵入性生物标志物数据对帕金森病和亨廷顿舞蹈病进行分类方面显示出有效性。本研究有助于推进神经疾病的非侵入性诊断方法,凸显了机器学习在医疗保健中的重要性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c9e0/11456181/e6c698dea53f/10.1177_20552076241284376-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验