Raghunathan S, Ade P A R, Anderson A J, Ansarinejad B, Archipley M, Austermann J E, Balkenhol L, Beall J A, Benabed K, Bender A N, Benson B A, Bianchini F, Bleem L E, Bock J, Bouchet F R, Bryant L, Camphuis E, Carlstrom J E, Cecil T W, Chang C L, Chaubal P, Chiang H C, Chichura P M, Chou T-L, Citron R, Coerver A, Crawford T M, Crites A T, Cukierman A, Daley C, Dibert K R, Dobbs M A, Doussot A, Dutcher D, Everett W, Feng C, Ferguson K R, Fichman K, Foster A, Galli S, Gallicchio J, Gambrel A E, Gardner R W, Ge F, George E M, Goeckner-Wald N, Gualtieri R, Guidi F, Guns S, Gupta N, de Haan T, Halverson N W, Hivon E, Holder G P, Holzapfel W L, Hood J C, Hrubes J D, Hryciuk A, Huang N, Hubmayr J, Irwin K D, Kéruzoré F, Khalife A R, Knox L, Korman M, Kornoelje K, Kuo C-L, Lee A T, Levy K, Li D, Lowitz A E, Lu C, Maniyar A, Martsen E S, McMahon J J, Menanteau F, Millea M, Montgomery J, Corbett Moran C, Nakato Y, Natoli T, Nibarger J P, Noble G I, Novosad V, Omori Y, Padin S, Pan Z, Paschos P, Patil S, Phadke K A, Prabhu K, Pryke C, Quan W, Rahimi M, Rahlin A, Reichardt C L, Rouble M, Ruhl J E, Saliwanchik B R, Schaffer K K, Schiappucci E, Sievers C, Smecher G, Sobrin J A, Stark A A, Stephen J, Suzuki A, Tandoi C, Thompson K L, Thorne B, Trendafilova C, Tucker C, Umilta C, Veach T, Vieira J D, Viero M P, Wan Y, Wang G, Whitehorn N, Wu W L K, Yefremenko V, Young M R, Zebrowski J A, Zemcov M
Center for AstroPhysical Surveys, <a href="https://ror.org/03g9ch715">National Center for Supercomputing Applications</a>, Urbana, Illinois 61801, USA.
School of Physics and Astronomy, Cardiff University, Cardiff CF24 3YB, United Kingdom.
Phys Rev Lett. 2024 Sep 20;133(12):121004. doi: 10.1103/PhysRevLett.133.121004.
We report results from an analysis aimed at detecting the trispectrum of the kinematic Sunyaev-Zel'dovich (kSZ) effect by combining data from the South Pole Telescope (SPT) and Herschel-SPIRE experiments over a 100 deg^{2} field. The SPT observations combine data from the previous and current surveys, namely SPTpol and SPT-3G, to achieve depths of 4.5, 3, and 16 μK-arcmin in bands centered at 95, 150, and 220 GHz. For SPIRE, we include data from the 600 and 857 GHz bands. We reconstruct the velocity-induced large-scale correlation of the small-scale kSZ signal with a quadratic estimator that uses two cosmic microwave background (CMB) temperature maps, constructed by optimally combining data from all the frequency bands. We reject the null hypothesis of a zero trispectrum at 10.3σ level. However, the measured trispectrum contains contributions from both the kSZ and other undesired components, such as CMB lensing and astrophysical foregrounds, with kSZ being sub-dominant. We use the agora simulations to estimate the expected signal from CMB lensing and astrophysical foregrounds. After accounting for the contributions from CMB lensing and foreground signals, we do not detect an excess kSZ-only trispectrum and use this nondetection to set constraints on reionization. By applying a prior based on observations of the Gunn-Peterson trough, we obtain an upper limit on the duration of reionization of Δz_{re,50}<4.5 (95% confidence level). We find these constraints are fairly robust to foregrounds assumptions. This trispectrum measurement is independent of, but consistent with, Planck's optical depth measurement. This result is the first constraint on the epoch of reionization using the non-Gaussian nature of the kSZ signal.
我们报告了一项分析结果,该分析旨在通过合并南极望远镜(SPT)和赫歇尔- SPIRE实验在100平方度视场的数据来检测运动学苏尼亚耶夫-泽尔多维奇(kSZ)效应的三谱。SPT观测结合了之前和当前的巡天数据,即SPTpol和SPT - 3G,在中心频率为95、150和220吉赫兹的波段分别达到了4.5、3和16微开尔文-角分的深度。对于SPIRE,我们纳入了600和857吉赫兹波段的数据。我们使用二次估计器重建了小尺度kSZ信号的速度诱导大尺度相关性,该估计器使用了两个宇宙微波背景(CMB)温度图,这些图是通过对所有频段数据进行最优组合构建的。我们在10.3σ水平上拒绝了三谱为零的原假设。然而,测得的三谱包含kSZ和其他不期望成分的贡献,如CMB引力透镜效应和天体物理前景,其中kSZ占次要地位。我们使用agora模拟来估计CMB引力透镜效应和天体物理前景的预期信号。在考虑了CMB引力透镜效应和前景信号的贡献后,我们未检测到仅由kSZ产生的额外三谱,并利用这一未检测结果对再电离进行了限制。通过应用基于对冈恩-彼得森槽观测的先验信息,我们得到了再电离持续时间的上限Δz_{re,50}<4.5(95%置信水平)。我们发现这些限制对前景假设相当稳健。这种三谱测量独立于普朗克的光学深度测量,但与之相符。这一结果是利用kSZ信号的非高斯性质对再电离时代的首个限制。