Di Mascolo Luca, Perrott Yvette, Mroczkowski Tony, Andreon Stefano, Ettori Stefano, Simionescu Aurora, Raghunathan Srinivasan, van Marrewijk Joshiwa, Cicone Claudia, Lee Minju, Nelson Dylan, Sommovigo Laura, Booth Mark, Klaassen Pamela, Andreani Paola, Cordiner Martin A, Johnstone Doug, van Kampen Eelco, Liu Daizhong, Maccarone Thomas J, Morris Thomas W, Saintonge Amélie, Smith Matthew, Thelen Alexander E, Wedemeyer Sven
Laboratoire Lagrange, Observatoire de la Côte d'Azur, University of Côte d'Azur, Nice, Provence-Alpes-Côte d'Azur, 06304, France.
Astronomy Unit, Department of Physics, University of Trieste, Trieste, Friuli-Venezia Giulia, 34131, Italy.
Open Res Eur. 2024 Jun 10;4:113. doi: 10.12688/openreseurope.17449.1. eCollection 2024.
An omnipresent feature of the multi-phase "cosmic web" - the large-scale filamentary backbone of the Universe - is that warm/hot (≳ 10 K) ionized gas pervades it. This gas constitutes a relevant contribution to the overall universal matter budget across multiple scales, from the several tens of Mpc-scale intergalactic filaments, to the Mpc intracluster medium (ICM), all the way down to the circumgalactic medium (CGM) surrounding individual galaxies, on scales from ∼ 1 kpc up to their respective virial radii (∼ 100 kpc). The study of the hot baryonic component of cosmic matter density represents a powerful means for constraining the intertwined evolution of galactic populations and large-scale cosmological structures, for tracing the matter assembly in the Universe and its thermal history. To this end, the Sunyaev-Zeldovich (SZ) effect provides the ideal observational tool for measurements out to the beginnings of structure formation. The SZ effect is caused by the scattering of the photons from the cosmic microwave background off the hot electrons embedded within cosmic structures, and provides a redshift-independent perspective on the thermal and kinematic properties of the warm/hot gas. Still, current and next-generation (sub)millimeter facilities have been providing only a partial view of the SZ Universe due to any combination of: limited angular resolution, spectral coverage, field of view, spatial dynamic range, sensitivity, or all of the above. In this paper, we motivate the development of a wide-field, broad-band, multi-chroic continuum instrument for the Atacama Large Aperture Submillimeter Telescope (AtLAST) by identifying the scientific drivers that will deepen our understanding of the complex thermal evolution of cosmic structures. On a technical side, this will necessarily require efficient multi-wavelength mapping of the SZ signal with an unprecedented spatial dynamic range (from arcsecond to degree scales) and we employ detailed theoretical forecasts to determine the key instrumental constraints for achieving our goals.
多阶段“宇宙网”(宇宙的大尺度丝状骨架)一个普遍存在的特征是,温暖/炽热(≳10 K)的电离气体弥漫其中。这种气体在多个尺度上对整个宇宙物质预算都有重要贡献,从几十兆秒差距尺度的星系际丝状结构,到兆秒差距尺度的星系团内介质(ICM),一直到单个星系周围、尺度从约1千秒差距到各自的晕半径(约100千秒差距)的星系际介质(CGM)。对宇宙物质密度中热重子成分的研究是限制星系群体和大尺度宇宙结构交织演化、追踪宇宙中物质聚集及其热历史的有力手段。为此,苏尼亚耶夫-泽尔多维奇(SZ)效应为测量直至结构形成初期提供了理想的观测工具。SZ效应是由宇宙微波背景的光子与宇宙结构中嵌入的热电子散射引起的,它提供了一个与红移无关的视角来了解温暖/炽热气体的热和运动学性质。然而,由于以下任何一种组合因素:有限的角分辨率、光谱覆盖范围、视场、空间动态范围、灵敏度,或者上述所有因素,当前和下一代(亚)毫米波设备仅提供了SZ宇宙的部分视图。在本文中,我们通过确定将加深我们对宇宙结构复杂热演化理解的科学驱动因素,推动为阿塔卡马大型毫米/亚毫米波望远镜(AtLAST)开发一种宽视场、宽带、多色连续谱仪器。在技术方面,这必然需要以前所未有的空间动态范围(从角秒到度尺度)对SZ信号进行高效多波长映射,并且我们利用详细的理论预测来确定实现我们目标的关键仪器约束条件。