Li Aixin, Zhao Kaitao, Duan Yurong, Zhang Bei, Zheng Yingcheng, Zhu Chengliang, Chen Qiongrong, Liu Wen-Bo, Hui Lixia, Xia Yuchen, Cheng Xiaoming
State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, Institute of Medical Virology, TaiKang Medical School, Wuhan University, Wuhan, China.
School of Medical Laboratory, Shandong Second Medical University, Weifang, China.
J Virol. 2024 Nov 19;98(11):e0104224. doi: 10.1128/jvi.01042-24. Epub 2024 Oct 7.
SARS-CoV-2 nonstructural protein 13 (nsp13) has been shown to selectively suppress the transcription of episomal DNA while sparing chromosomal DNA. Hepatitis B Virus (HBV) harbors covalently closed circular DNA (cccDNA), a form of viral episomal DNA found within infected hepatocyte nuclei. The persistence of cccDNA is the major cause of chronic HBV infection. In this study, we investigated the impact of SARS-CoV-2 nsp13 on HBV replication, particularly in the context of cccDNA. Our findings demonstrate that nsp13 effectively hinders HBV replication by suppressing the transcription of HBV cccDNA, both and . Additionally, we observed that SARS-CoV-2 nsp13 binds to HBV cccDNA and its NTPase and helicase activities contribute significantly to inhibiting HBV replication. Furthermore, our screening identified the interaction between nsp13 and structural maintenance of chromosomes 4, opening new avenues for future mechanistic inquiries. This study presents the evidence suggesting the potential utilization of SARS-CoV-2 nsp13 as a strategy to impede HBV replication by specifically targeting cccDNA. These findings provide a proof of concept for exploring nsp13 as a prospective approach in combating HBV infection.
To effectively combat hepatitis B virus (HBV), it is imperative to develop potent antiviral medications targeting covalently closed circular DNA (cccDNA). Our investigation aimed to assess the impact of SARS-CoV-2 nsp13 on HBV replication across diverse HBV models, confirming its ability to significantly reduce several HBV replication markers. Additionally, our identification of the interaction between nsp13 and SMC4 opens the door for further mechanistic exploration. This marks a paradigm shift in our approach to HBV antiviral therapy, introducing an entirely novel perspective. Our findings propose a novel strategy for developing anti-HBV drugs that specifically target HBV cccDNA.
严重急性呼吸综合征冠状病毒2(SARS-CoV-2)非结构蛋白13(nsp13)已被证明可选择性抑制游离DNA的转录,同时不影响染色体DNA。乙型肝炎病毒(HBV)含有共价闭合环状DNA(cccDNA),这是一种在受感染的肝细胞核内发现的病毒游离DNA形式。cccDNA的持续存在是慢性HBV感染的主要原因。在本研究中,我们研究了SARS-CoV-2 nsp13对HBV复制的影响,特别是在cccDNA的背景下。我们的研究结果表明,nsp13通过抑制HBV cccDNA的转录有效地阻碍了HBV复制。此外,我们观察到SARS-CoV-2 nsp13与HBV cccDNA结合,其NTPase和解旋酶活性对抑制HBV复制有显著贡献。此外,我们的筛选确定了nsp13与染色体结构维持蛋白4之间的相互作用,为未来的机制研究开辟了新途径。本研究提供的证据表明,SARS-CoV-2 nsp13有可能作为一种通过特异性靶向cccDNA来阻碍HBV复制的策略。这些发现为探索nsp13作为对抗HBV感染的前瞻性方法提供了概念验证。
为了有效对抗乙型肝炎病毒(HBV),开发针对共价闭合环状DNA(cccDNA)的有效抗病毒药物至关重要。我们的研究旨在评估SARS-CoV-2 nsp13在不同HBV模型中对HBV复制的影响,证实其显著降低多种HBV复制标志物的能力。此外,我们对nsp13与SMC4之间相互作用的鉴定为进一步的机制探索打开了大门。这标志着我们HBV抗病毒治疗方法的范式转变,引入了全新的视角。我们的研究结果提出了一种开发特异性靶向HBV cccDNA的抗HBV药物的新策略。