Suppr超能文献

神经树综述:神经网络与决策树的协同进化

A Survey of Neural Trees: Co-Evolving Neural Networks and Decision Trees.

作者信息

Li Haoling, Song Jie, Xue Mengqi, Zhang Haofei, Song Mingli

出版信息

IEEE Trans Neural Netw Learn Syst. 2024 Oct 7;PP. doi: 10.1109/TNNLS.2024.3446891.

Abstract

Neural networks (NNs) and decision trees (DTs) are both popular models of machine learning, yet coming with mutually exclusive advantages and limitations. To bring the best of the two worlds, a variety of approaches are proposed to integrate NNs and DTs explicitly or implicitly. In this survey, these approaches are organized in a school which we term neural trees (NTs). This survey aims to present a comprehensive review of NTs and explore in detail how they enhance the model interpretability. Our first contribution is a detailed taxonomy of NTs, which characterizes the seamless integration and co-evolution of NNs and DTs. Subsequently, we analyze NTs in terms of their interpretability and performance and suggest potential solutions to the remaining challenges. Finally, this survey concludes with a discussion about other considerations like conditional computation and promising directions toward this field. A list of papers reviewed in this survey, along with their corresponding codes, is available at: https://github.com/ zju-vipa/awesome-neural-trees.

摘要

神经网络(NNs)和决策树(DTs)都是机器学习中流行的模型,但它们具有相互排斥的优点和局限性。为了融合两者的优势,人们提出了各种方法来显式或隐式地集成神经网络和决策树。在本次综述中,这些方法被归为一类,我们称之为神经树(NTs)。本综述旨在对神经树进行全面回顾,并详细探讨它们如何提高模型的可解释性。我们的第一个贡献是对神经树进行了详细的分类,它描述了神经网络和决策树的无缝集成与共同进化。随后,我们从可解释性和性能方面分析了神经树,并针对剩余的挑战提出了潜在的解决方案。最后,本次综述以关于其他考虑因素(如条件计算)以及该领域未来有前景的方向的讨论作为结尾。本次综述中所引用论文的列表及其相应代码可在以下网址获取:https://github.com/ zju-vipa/awesome-neural-trees 。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验