Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea.
Medicinal and Aromatic Plants Research Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre (NRC), 33 El-Behouth St., Dokki, Giza 12622, Egypt.
ACS Appl Bio Mater. 2024 Oct 21;7(10):6873-6889. doi: 10.1021/acsabm.4c00988. Epub 2024 Oct 7.
Microbial combating is one of the hot research topics, and finding an alternative strategy is considerably required nowadays. Here, we report on a developed combined chemo- and photodynamic delivery system with a core of zinc oxide nanoparticles (ZnO NPs), porphyrin photosensitizer (POR) connected to alginate polymer (ALG), and berberine (alkaloid natural agent, BER) with favorable antimicrobial effects. According to the achieved main designs, the results demonstrated that the loading capacity and entrapment efficiency reached 22.2 wt % and 95.2%, respectively, for ZnO@ALG-POR/BER nanoformulation (second design) compared to 5.88 wt % and 45.1% for ZnOBER@ALG-POR design (first design). Importantly, when the intended nanoformulations were combined with laser irradiation for 10 min, they showed effective antifungal and antibacterial action against , , and . Comparing these treatments to ZnO NPs and free BER, a complete (100%) suppression of bacterial and fungal growth was observed by ZnO@ALG-POR/BER nanoformulation treated , and by ZnOBER treated . Also, after laser treatments, most data showed that was more sensitive to treatments using nanoformulations than . The nanoformulations like ZnOBER@ALG-POR were highly comparable to traditional antibiotics against and before laser application. The results of the cytotoxicity assessment demonstrated that the nanoformulations exhibited moderate biocompatibility on normal human immortalized retinal epithelial (RPE1) cells. Notably, the most biocompatible nanoformulation was ZnOBER@ALG-POR, which possessed ∼9% inhibition of RPE1 cells compared to others. High binding affinities were found between all three microbial strains' receptor proteins and ligands in the molecular docking interaction between the receptor proteins and the ligand molecules (mostly BER and POR). In conclusion, our findings point to the possible use of hybrid nanoplatform delivery systems that combine natural agents and photodynamic therapy into a single therapeutic agent, effectively combating microbial infections. Therapeutic efficiency correlates with nanoformulation design and microorganisms, demonstrating possible optimization for further development.
微生物防治是当前热门的研究课题之一,因此需要开发替代策略。本研究报告了一种新型的化学和光动力联合递药系统,该系统以氧化锌纳米粒子(ZnO NPs)为核心,连接有藻酸盐聚合物(ALG)和小檗碱(生物碱天然药物,BER)的卟啉光敏剂(POR)。根据主要设计方案,结果表明,与 ZnOBER@ALG-POR 设计(第一设计)相比,载药量和包封率分别达到 22.2wt%和 95.2%,对于 ZnO@ALG-POR/BER 纳米制剂(第二设计)。重要的是,当预期的纳米制剂与激光照射 10 分钟联合使用时,它们对 、 、 显示出有效的抗真菌和抗菌作用。与 ZnO NPs 和游离 BER 相比,用 ZnO@ALG-POR/BER 纳米制剂处理的 、用 ZnOBER 处理的 ,观察到完全(100%)抑制细菌和真菌生长。此外,经过激光处理后,大多数数据表明,与纳米制剂处理相比, 对治疗更为敏感。在激光应用之前,像 ZnOBER@ALG-POR 这样的纳米制剂对 和 与传统抗生素高度可比。细胞毒性评估结果表明,纳米制剂在正常人永生化视网膜上皮(RPE1)细胞上表现出中等的生物相容性。值得注意的是,最具生物相容性的纳米制剂是 ZnOBER@ALG-POR,与其他纳米制剂相比,其对 RPE1 细胞的抑制率约为 9%。在三种微生物菌株的受体蛋白和配体之间的分子对接相互作用中,发现所有三种微生物菌株的受体蛋白和配体之间存在高结合亲和力(主要是 BER 和 POR)。总之,我们的研究结果表明,将天然药物和光动力疗法结合到单个治疗剂中的混合纳米平台递药系统可能具有潜在的应用价值,可有效对抗微生物感染。治疗效率与纳米制剂设计和微生物有关,表明可能需要进一步优化以进行进一步开发。