Suppr超能文献

生物打印心脏补片的研究进展与挑战述评

A critical review on advances and challenges of bioprinted cardiac patches.

机构信息

School of Basic Medical Sciences, Binzhou Medical University, Yantai, Shandong 264003, China; Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, University of Toronto, Toronto, Ontario M5G 1M1, Canada.

School of Basic Medical Sciences, Binzhou Medical University, Yantai, Shandong 264003, China.

出版信息

Acta Biomater. 2024 Nov;189:1-24. doi: 10.1016/j.actbio.2024.09.056. Epub 2024 Oct 5.

Abstract

Myocardial infarction (MI), which causes irreversible myocardium necrosis, affects 0.25 billion people globally and has become one of the most significant epidemics of our time. Over the past few years, bioprinting has moved beyond a concept of simply incorporating cells into biomaterials, to strategically defining the microenvironment (e.g., architecture, biomolecular signalling, mechanical stimuli, etc.) within which the cells are printed. Among the different bioprinting applications, myocardial repair is a field that has seen some of the most significant advances towards the management of the repaired tissue microenvironment. This review critically assesses the most recent biomedical innovations being carried out in cardiac patch bioprinting, with specific considerations given to the biomaterial design parameters, growth factors/cytokines, biomechanical and bioelectrical conditioning, as well as innovative biomaterial-based "4D" bioprinting (3D scaffold structure + temporal morphology changes) of myocardial tissues, immunomodulation and sustained delivery systems used in myocardium bioprinting. Key challenges include the ability to generate large quantities of cardiac cells, achieve high-density capillary networks, establish biomaterial designs that are comparable to native cardiac extracellular matrix, and manage the sophisticated systems needed for combining cardiac tissue microenvironmental cues while simultaneously establishing bioprinting technologies yielding both high-speed and precision. This must be achieved while considering quality assurance towards enabling reproducibility and clinical translation. Moreover, this manuscript thoroughly discussed the current clinical translational hurdles and regulatory issues associated with the post-bioprinting evaluation, storage, delivery and implantation of the bioprinted myocardial patches. Overall, this paper provides insights into how the clinical feasibility and important regulatory concerns may influence the design of the bioink (biomaterials, cell sources), fabrication and post-fabrication processes associated with bioprinting of the cardiac patches. This paper emphasizes that cardiac patch bioprinting requires extensive collaborations from imaging and 3D modelling technical experts, biomaterial scientists, additive manufacturing experts and healthcare professionals. Further, the work can also guide the field of cardiac patch bioprinting moving forward, by shedding light on the potential use of robotics and automation to increase productivity, reduce financial cost, and enable standardization and true commercialization of bioprinted cardiac patches. STATEMENT OF SIGNIFICANCE: The manuscript provides a critical review of important themes currently pursued for heart patch bioprinting, including critical biomaterial design parameters, physiologically-relevant cardiac tissue stimulations, and newly emerging cardiac tissue bioprinting strategies. This review describes the limited number of studies, to date in the literature, that describe systemic approaches to combine multiple design parameters, including capabilities to yield high-density capillary networks, establish biomaterial composite designs similar to native cardiac extracellular matrix, and incorporate cardiac tissue microenvironmental cues, while simultaneously establishing bioprinting technologies that yield high-speed and precision. New tools such as artificial intelligence may provide the analytical power to consider multiple design parameters and identify an optimized work-flow(s) for enabling the clinical translation of bioprinted cardiac patches.

摘要

心肌梗死(MI)导致不可逆转的心肌坏死,影响了全球 25 亿人,已成为我们这个时代最重要的流行病之一。在过去的几年中,生物打印已经超越了简单地将细胞纳入生物材料的概念,而是战略性地定义了细胞被打印的微环境(例如,结构、生物分子信号、机械刺激等)。在不同的生物打印应用中,心肌修复是在管理修复组织微环境方面取得了一些重大进展的领域。本综述批判性地评估了心脏贴片生物打印中正在进行的最新生物医学创新,特别考虑了生物材料设计参数、生长因子/细胞因子、生物力学和生物电学调节,以及基于创新生物材料的心肌组织的“4D”生物打印(3D 支架结构+时间形态变化)、免疫调节和持续药物输送系统在心肌生物打印中的应用。关键挑战包括能够生成大量的心肌细胞、实现高密度毛细血管网络、建立与天然心肌细胞外基质相当的生物材料设计,以及管理结合心脏组织微环境线索的复杂系统,同时建立既能实现高速又能实现高精度的生物打印技术。这必须在考虑质量保证以实现可重复性和临床转化的同时实现。此外,本文还深入讨论了与生物打印心肌贴片的后生物打印评估、存储、输送和植入相关的当前临床转化障碍和监管问题。总体而言,本文提供了一些见解,说明临床可行性和重要监管问题如何影响心脏贴片生物打印的生物墨水(生物材料、细胞来源)设计、制造和后制造过程。本文强调,心脏贴片生物打印需要成像和 3D 建模技术专家、生物材料科学家、增材制造专家和医疗保健专业人员的广泛合作。此外,这项工作还可以通过阐明机器人和自动化技术的潜在用途来提高生产力、降低财务成本以及实现生物打印心脏贴片的标准化和真正商业化,为心脏贴片生物打印领域的发展提供指导。意义声明:本文对心脏贴片生物打印目前所追求的重要主题进行了批判性回顾,包括关键的生物材料设计参数、与生理相关的心脏组织刺激以及新出现的心脏组织生物打印策略。本综述描述了文献中目前为数不多的研究描述了系统地结合多个设计参数的方法,包括产生高密度毛细血管网络的能力、建立类似于天然心肌细胞外基质的生物材料复合设计以及纳入心脏组织微环境线索的能力,同时建立了既能实现高速又能实现高精度的生物打印技术。人工智能等新工具可能提供分析能力,以考虑多个设计参数,并确定优化的工作流程,以实现生物打印心脏贴片的临床转化。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验