Afane Khalifa, Chen Juntao
Department of Computer and Information Sciences, Fordham University, New York, USA.
J Urban Health. 2025 Feb;102(1):92-100. doi: 10.1007/s11524-024-00920-5. Epub 2024 Oct 7.
This study investigates blood lead level (BLL) rates and testing among children under 6 years of age across the 42 neighborhoods in New York City from 2005 to 2021. Despite a citywide general decline in BLL rates, disparities at the neighborhood level persist and are not addressed in the official reports, highlighting the need for this comprehensive analysis. In this paper, we analyze the current BLL testing distribution and cluster the neighborhoods using a k-medoids clustering algorithm. We propose an optimized approach that improves resource allocation efficiency by accounting for case incidences and neighborhood risk profiles using a grid search algorithm. Our findings demonstrate statistically significant improvements in case detection and enhanced fairness by focusing on under-served and high-risk groups. Additionally, we propose actionable recommendations to raise awareness among parents, including outreach at local daycare centers and kindergartens, among other venues.
本研究调查了2005年至2021年纽约市42个社区6岁以下儿童的血铅水平(BLL)率及检测情况。尽管全市范围内BLL率总体呈下降趋势,但社区层面的差异依然存在,且官方报告未涉及这一问题,凸显了进行此项全面分析的必要性。在本文中,我们分析了当前BLL检测分布情况,并使用k-中心点聚类算法对社区进行聚类。我们提出了一种优化方法,通过使用网格搜索算法考虑病例发生率和社区风险概况来提高资源分配效率。我们的研究结果表明,通过关注服务不足和高风险群体,在病例检测方面有统计学上的显著改善,并且提高了公平性。此外,我们还提出了可行的建议,以提高家长的认识,包括在当地日托中心和幼儿园等场所进行宣传推广。