Koo Donghwan, Choi Yunseong, Kim Ungsoo, Kim Jihyun, Seo Jihyung, Son Eunbin, Min Hanul, Kang Joohoon, Park Hyesung
Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea.
KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, Republic of Korea.
Nat Nanotechnol. 2025 Jan;20(1):75-82. doi: 10.1038/s41565-024-01799-8. Epub 2024 Oct 7.
Mesoporous structured electron transport layers (ETLs) in perovskite solar cells (PSCs) have an increased surface contact with the perovskite layer, enabling effective charge separation and extraction, and high-efficiency devices. However, the most widely used ETL material in PSCs, TiO, requires a sintering temperature of more than 500 °C and undergoes photocatalytic reaction under incident illumination that limits operational stability. Recent efforts have focused on finding alternative ETL materials, such as SnO. Here we propose mesoporous MoS as an efficient and stable ETL material. The MoS interlayer increases the surface contact area with the adjacent perovskite layer, improving charge transfer dynamics between the two layers. In addition, the matching between the MoS and the perovskite lattices facilitates preferential growth of perovskite crystals with low residual strain, compared with TiO. Using mesoporous structured MoS as ETL, we obtain PSCs with 25.7% (0.08 cm, certified 25.4%) and 22.4% (1.00 cm) efficiencies. Under continuous illumination, our cell remains stable for more than 2,000 h, demonstrating improved photostability with respect to TiO.
钙钛矿太阳能电池(PSCs)中的介孔结构电子传输层(ETLs)与钙钛矿层的表面接触增加,能够实现有效的电荷分离和提取,从而制造出高效器件。然而,PSCs中使用最广泛的ETL材料TiO需要超过500°C的烧结温度,并且在入射光照下会发生光催化反应,这限制了其运行稳定性。最近的研究致力于寻找替代的ETL材料,如SnO。在此,我们提出介孔MoS作为一种高效且稳定的ETL材料。MoS中间层增加了与相邻钙钛矿层的表面接触面积,改善了两层之间的电荷转移动力学。此外,与TiO相比,MoS和钙钛矿晶格之间的匹配有利于低残余应变的钙钛矿晶体的优先生长。使用介孔结构的MoS作为ETL,我们获得了效率为25.7%(0.08 cm²,认证效率为25.4%)和22.4%(1.00 cm²)的PSCs。在连续光照下,我们的电池在超过2000小时内保持稳定,表明相对于TiO具有更好的光稳定性。