Suppr超能文献

液体介质退火制备重现性更好的耐用钙钛矿太阳能电池。

Liquid medium annealing for fabricating durable perovskite solar cells with improved reproducibility.

机构信息

Experimental Centre for Advanced Materials, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China.

Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, BIC-ESAT, School of Materials Science and Engineering, Peking University, Beijing 100871, P. R. China.

出版信息

Science. 2021 Jul 30;373(6554):561-567. doi: 10.1126/science.abh3884.

Abstract

Solution processing of semiconductors is highly promising for the high-throughput production of cost-effective electronics and optoelectronics. Although hybrid perovskites have potential in various device applications, challenges remain in the development of high-quality materials with simultaneously improved processing reproducibility and scalability. Here, we report a liquid medium annealing (LMA) technology that creates a robust chemical environment and constant heating field to modulate crystal growth over the entire film. Our method produces films with high crystallinity, fewer defects, desired stoichiometry, and overall film homogeneity. The resulting perovskite solar cells (PSCs) yield a stabilized power output of 24.04% (certified 23.7%, 0.08 cm) and maintain 95% of their initial power conversion efficiency (PCE) after 2000 hours of operation. In addition, the 1-cm PSCs exhibit a stabilized power output of 23.15% (certified PCE 22.3%) and keep 90% of their initial PCE after 1120 hours of operation, which illustrates their feasibility for scalable fabrication. LMA is less climate dependent and produces devices in-house with negligible performance variance year round. This method thus opens a new and effective avenue to improving the quality of perovskite films and photovoltaic devices in a scalable and reproducible manner.

摘要

溶液处理在高效益、低成本地生产电子学和光电学器件方面有很大的应用前景。尽管钙钛矿型混合材料在各种器件应用中有很大的潜力,但是在开发具有同时提高的加工再现性和可扩展性的高质量材料方面仍然存在挑战。在这里,我们报告了一种液体介质退火(LMA)技术,该技术创造了一个稳定的化学环境和恒定的加热场,从而可以在整个薄膜上调节晶体生长。我们的方法生产出的薄膜具有高结晶度、更少的缺陷、所需的化学计量比和整体薄膜均匀性。所得的钙钛矿太阳能电池(PSC)的稳定功率输出为 24.04%(认证效率为 23.7%,0.08cm),在 2000 小时的运行后,其初始功率转换效率(PCE)保持在 95%。此外,1cm2 的 PSC 的稳定功率输出为 23.15%(认证的 PCE 为 22.3%),在 1120 小时的运行后,其初始 PCE 保持在 90%,这说明了其在可扩展制造方面的可行性。LMA 对气候的依赖性较小,可以在室内生产器件,且全年的性能变化可忽略不计。因此,该方法为以可扩展和可重复的方式提高钙钛矿薄膜和光伏器件的质量开辟了一条新的有效途径。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验