Dalla Lana School of Public Health, Health Sciences Building 6th floor, 155 College Street, Toronto, ON, M5T 3M7, Canada.
ICES, G1 06 2075 Bayview Ave, Toronto, ON, M4N 3M5, Canada.
Popul Health Metr. 2024 Oct 7;22(1):27. doi: 10.1186/s12963-024-00348-8.
Regional variations in SARS-CoV-2 infection were observed in Canada and other countries. Studies have used multilevel analyses to examine how a context, such as a neighbourhood, can affect the SARS-CoV-2 infection rates of the people within it. However, few multilevel studies have quantified the magnitude of the general contextual effect (GCE) in SARS-CoV-2 infection rates and assessed how it may be associated with individual- and area-level characteristics. To address this gap, we will illustrate the application of the median rate ratio (MRR) in a multilevel Poisson analysis for quantifying the GCE in SARS-CoV-2 infection rates in Ontario, Canada.
We conducted a population-based, two-level multilevel observational study where individuals were nested into regions (i.e., forward sortation areas [FSAs]). The study population included community-dwelling adults in Ontario, Canada, between March 1, 2020, and May 1, 2021. The model included seven individual-level variables (age, sex, asthma, diabetes, hypertension, congestive heart failure, and chronic obstructive pulmonary disease) and four FSA census-based variables (household size, household income, employment, and driving to work). The MRR is a median value of the rate ratios comparing two patients with identical characteristics randomly selected from two different regions ordered by rate. We examined the attenuation of the MRR after including individual-level and FSA census-based variables to assess their role in explaining the variation in rates between regions.
Of the 11 789 128 Ontario adult community-dwelling residents, 343 787 had at least one SARS-CoV-2 infection during the study period. After adjusting for individual-level and FSA census-based variables, the MRR was attenuated to 1.67 (39% reduction from unadjusted MRR). The strongest FSA census-based associations were household size (RR = 1.88, 95% CI: 1.71-1.97) and driving to work (RR = 0.68, 95% CI: 0.65-0.71).
The individual- and area-level characteristics in our study accounted for approximately 40% of the between-region variation in SARS-CoV-2 infection rates measured by MRR in Ontario, Canada. These findings suggest that population-based policies to address social determinants of health that attenuate the MRR may reduce the observed between-region heterogeneity in SARS-CoV-2 infection rates.
在加拿大和其他国家观察到了 SARS-CoV-2 感染的区域差异。研究已经使用多层次分析来检查一个环境(例如一个社区)如何影响其中的人的 SARS-CoV-2 感染率。然而,很少有多层次的研究量化了 SARS-CoV-2 感染率中的一般环境效应 (GCE) 的幅度,并评估了它可能与个体和地区层面的特征有关。为了解决这一差距,我们将在安大略省的 SARS-CoV-2 感染率的多层次泊松分析中说明中位数率比 (MRR) 的应用,以量化 GCE。
我们进行了一项基于人群的两级多层次观察性研究,其中个体被嵌套在区域(即前向排序区 [FSAs])中。研究人群包括 2020 年 3 月 1 日至 2021 年 5 月 1 日期间安大略省的社区居住成年人。该模型包括七个个体层面的变量(年龄、性别、哮喘、糖尿病、高血压、充血性心力衰竭和慢性阻塞性肺疾病)和四个 FSA 人口普查的变量(家庭规模、家庭收入、就业和开车上班)。MRR 是比较从按率排序的两个不同地区随机选择的两个具有相同特征的患者的率比的中位数。我们检查了在包括个体层面和 FSA 人口普查的变量后,MRR 的衰减情况,以评估它们在解释地区间率的差异方面的作用。
在 11789128 名安大略省成年社区居民中,有 343787 人在研究期间至少有一次 SARS-CoV-2 感染。在调整了个体层面和 FSA 人口普查变量后,MRR 衰减到 1.67(未调整 MRR 的 39%减少)。最强的 FSA 人口普查关联是家庭规模(RR=1.88,95%CI:1.71-1.97)和开车上班(RR=0.68,95%CI:0.65-0.71)。
我们的研究中的个体和地区层面的特征解释了安大略省 SARS-CoV-2 感染率的约 40%的地区间差异,这一差异是通过加拿大安大略省的 MRR 来衡量的。这些发现表明,基于人群的政策可以解决减轻 MRR 的健康社会决定因素,这可能会降低观察到的 SARS-CoV-2 感染率的地区间异质性。