Suppr超能文献

在 PALLAS 试验(ABCSG-42/AFT-05/BIG-14-13/PrE0109)中,早期乳腺癌患者 HER2-低的临床特征、预后和预测价值。

Clinical characterization, prognostic, and predictive values of HER2-low in patients with early breast cancer in the PALLAS trial (ABCSG-42/AFT-05/BIG-14-13/PrE0109).

机构信息

Institut Jules Bordet, Academic Trials Promoting Team (ATPT), Université Libre de Bruxelles (U.L.B), Hôpital Universitaire de Bruxelles (HUB), Brussels, Belgium.

Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.

出版信息

Breast Cancer Res. 2024 Oct 7;26(1):140. doi: 10.1186/s13058-024-01899-2.

Abstract

BACKGROUND

Bidirectional crosstalk between HER2 and estrogen receptor (ER) pathways may influence outcomes and the efficacy of endocrine therapy (ET). Low HER2 expression levels (HER2-low) have emerged as a predictive biomarker in patients with breast cancer (BC).

METHODS

PALLAS is an open, international, phase 3 study evaluating the addition of palbociclib for 2 years to adjuvant ET in patients with stage II-III ER-positive/HER2-negative BC. To assess the impact of HER2 expression on patient outcomes in the phase III PALLAS trial, we analyzed (1) the association between rate of HER2-low with demographic and clinicopathological parameters, (2) the prognostic value of HER2-low status on invasive disease-free survival (iDFS), distant relapse-free survival (DRFS), and overall survival (OS) and (3) HER2 expression's value as a predictive biomarker of response to palbociclib. HER2-low was defined as HER2 immunohistochemistry (IHC) 1 + or IHC 2 + with negative in situ hybridization (ISH). All pathologic evaluation was performed locally. Prognostic and predictive power of HER2 were assessed with Cox models.

RESULTS

From the original PALLAS intention-to-treat population (N = 5753), 5304 patients (92.2%) were included in this analysis. Among these, 2254 patients (42.5%) were classified as having HER2 IHC 0 (HER2-0), and 3050 (57.5%) as having HER2-low disease (1838 with IHC 1 + and 1212 with IHC 2 +). Median follow-up was 59.8 months. HER2-low prevalence varied significantly across 21 participating countries (range 16.7% to 75.6%; p < 0.001) and was more frequent in patients enrolled in North America (63.1%) than in Europe (53.4%) or other regions (53.4%) (p < 0.001). HER2 status was not significantly associated with iDFS in a multivariable Cox model (hazard ratio 0.93, 95% confidence interval 0.81 - 1.06). No significant interaction was observed between treatment arm and HER2 status for iDFS (p = 0.43). Similar results were obtained for DRFS and OS.

CONCLUSIONS

In this large, prospective, global patient cohort, no differences were observed in clinical parameters, prognosis, or differential benefit from palbociclib between HER2-0 and HER2-low tumors. Significant geographic variability was observed in the prevalence of HER2-low status, suggesting a high degree of variation in pathologic assessment of HER2 expression without impact on outcomes.

摘要

背景

HER2 和雌激素受体 (ER) 通路的双向串扰可能会影响结果和内分泌治疗 (ET) 的疗效。HER2 低表达 (HER2-low) 已成为乳腺癌 (BC) 患者的预测性生物标志物。

方法

PALLAS 是一项开放的、国际性的、III 期研究,评估了帕博西尼在 II-III 期 ER 阳性/HER2 阴性 BC 患者中辅助 ET 治疗 2 年的疗效。为了评估 HER2 表达对 III 期 PALLAS 试验患者结局的影响,我们分析了 (1) 率的 HER2-low 与人口统计学和临床病理参数之间的关系,(2) HER2-low 状态对浸润性无病生存 (iDFS)、远处无复发生存 (DRFS) 和总生存 (OS) 的预后价值,以及 (3) HER2 表达作为对帕博西尼反应的预测性生物标志物的价值。HER2-low 定义为 HER2 免疫组化 (IHC) 1+或 IHC 2+且原位杂交 (ISH) 阴性。所有病理评估均在当地进行。使用 Cox 模型评估 HER2 的预后和预测能力。

结果

从原始的 PALLAS 意向治疗人群 (N=5753) 中,有 5304 名患者 (92.2%) 纳入了本分析。其中,2254 名患者 (42.5%) 被归类为 HER2 IHC 0 (HER2-0),3050 名患者 (57.5%) 被归类为 HER2-low 疾病 (1838 名 IHC 1+,1212 名 IHC 2+)。中位随访时间为 59.8 个月。HER2-low 的流行率在 21 个参与国家之间差异显著 (范围为 16.7%至 75.6%;p<0.001),在北美入组的患者中更为常见 (63.1%),而在欧洲 (53.4%) 或其他地区 (53.4%) 则较低 (p<0.001)。在多变量 Cox 模型中,HER2 状态与 iDFS 无显著相关性 (风险比 0.93,95%置信区间 0.81-1.06)。在 iDFS 方面,治疗组与 HER2 状态之间未观察到显著的相互作用 (p=0.43)。DRFS 和 OS 也得到了类似的结果。

结论

在这项大型的、前瞻性的、全球性的患者队列研究中,HER2-0 和 HER2-low 肿瘤之间在临床参数、预后或对帕博西尼的获益方面无差异。HER2-low 状态的流行率存在显著的地域差异,提示 HER2 表达的病理评估存在很大程度的差异,但对结局无影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fda9/11459983/4d9831b73659/13058_2024_1899_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验