Suppr超能文献

CRISPR-GEM:一种用于 CRISPR 遗传靶标发现和评估的新型机器学习模型。

CRISPR-GEM: A Novel Machine Learning Model for CRISPR Genetic Target Discovery and Evaluation.

机构信息

Department of Bioengineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States.

Department of Electrical and Computer Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States.

出版信息

ACS Synth Biol. 2024 Oct 18;13(10):3413-3429. doi: 10.1021/acssynbio.4c00473. Epub 2024 Oct 7.

Abstract

CRISPR gene editing strategies are shaping cell therapies through precise and tunable control over gene expression. However, limitations in safely delivering high quantities of CRISPR machinery demand careful target gene selection to achieve reliable therapeutic effects. Informed target gene selection requires a thorough understanding of the involvement of target genes in gene regulatory networks (GRNs) and thus their impact on cell phenotype. Effective decoding of these complex networks has been achieved using machine learning models, but current techniques are limited to single cell types and focus mainly on transcription factors, limiting their applicability to CRISPR strategies. To address this, we present CRISPR-GEM, a multilayer perceptron (MLP) based synthetic GRN constructed to accurately predict the downstream effects of CRISPR gene editing. First, input and output nodes are identified as differentially expressed genes between defined experimental and target cell/tissue types, respectively. Then, MLP training learns regulatory relationships in a black-box approach allowing accurate prediction of output gene expression using only input gene expression. Finally, CRISPR-mimetic perturbations are made to each input gene individually, and the resulting model predictions are compared to those for the target group to score and assess each input gene as a CRISPR candidate. The top scoring genes provided by CRISPR-GEM therefore best modulate experimental group GRNs to motivate transcriptomic shifts toward a target group phenotype. This machine learning model is the first of its kind for predicting optimal CRISPR target genes and serves as a powerful tool for enhanced CRISPR strategies across a range of cell therapies.

摘要

CRISPR 基因编辑策略通过对基因表达的精确和可调控制,正在塑造细胞疗法。然而,安全输送大量 CRISPR 机制的局限性要求仔细选择靶基因,以实现可靠的治疗效果。明智的靶基因选择需要深入了解靶基因在基因调控网络 (GRN) 中的参与情况,以及它们对细胞表型的影响。机器学习模型已被用于有效地解码这些复杂的网络,但目前的技术仅限于单细胞类型,主要集中在转录因子上,限制了它们在 CRISPR 策略中的适用性。为了解决这个问题,我们提出了 CRISPR-GEM,这是一个基于多层感知器 (MLP) 的合成 GRN,旨在准确预测 CRISPR 基因编辑的下游效应。首先,输入和输出节点分别被确定为定义的实验和靶细胞/组织类型之间差异表达的基因。然后,MLP 训练以黑盒方式学习调节关系,仅使用输入基因表达即可准确预测输出基因表达。最后,对每个输入基因分别进行 CRISPR 模拟扰动,将得到的模型预测与目标组进行比较,以对每个输入基因进行评分,并将其评估为 CRISPR 候选基因。因此,CRISPR-GEM 提供的得分最高的基因可以最佳地调节实验组的 GRN,促使转录组向目标组表型发生转变。这种机器学习模型是预测最佳 CRISPR 靶基因的首例,为各种细胞疗法的增强型 CRISPR 策略提供了强大的工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c6a4/11494708/d8056ed91f37/sb4c00473_0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验