Suppr超能文献

基于传统机器学习和深度学习方法的 CRISPR/Cas9 脱靶和靶标预测:综述。

Using traditional machine learning and deep learning methods for on- and off-target prediction in CRISPR/Cas9: a review.

机构信息

Departement d'Informatique, Universite du Quebec a Montreal, H2X 3Y7, Montreal, QC, Canada.

Institute for Intelligent Systems Research and Innovation (IISRI), Deakin University, 3216, Geelong, VIC, Australia.

出版信息

Brief Bioinform. 2023 May 19;24(3). doi: 10.1093/bib/bbad131.

Abstract

CRISPR/Cas9 (Clustered Regularly Interspaced Short Palindromic Repeats and CRISPR-associated protein 9) is a popular and effective two-component technology used for targeted genetic manipulation. It is currently the most versatile and accurate method of gene and genome editing, which benefits from a large variety of practical applications. For example, in biomedicine, it has been used in research related to cancer, virus infections, pathogen detection, and genetic diseases. Current CRISPR/Cas9 research is based on data-driven models for on- and off-target prediction as a cleavage may occur at non-target sequence locations. Nowadays, conventional machine learning and deep learning methods are applied on a regular basis to accurately predict on-target knockout efficacy and off-target profile of given single-guide RNAs (sgRNAs). In this paper, we present an overview and a comparative analysis of traditional machine learning and deep learning models used in CRISPR/Cas9. We highlight the key research challenges and directions associated with target activity prediction. We discuss recent advances in the sgRNA-DNA sequence encoding used in state-of-the-art on- and off-target prediction models. Furthermore, we present the most popular deep learning neural network architectures used in CRISPR/Cas9 prediction models. Finally, we summarize the existing challenges and discuss possible future investigations in the field of on- and off-target prediction. Our paper provides valuable support for academic and industrial researchers interested in the application of machine learning methods in the field of CRISPR/Cas9 genome editing.

摘要

CRISPR/Cas9(成簇规律间隔短回文重复序列和 CRISPR 相关蛋白 9)是一种流行且有效的两组分技术,用于靶向基因操作。它是目前最通用和精确的基因和基因组编辑方法,得益于各种各样的实际应用。例如,在生物医学领域,它已用于与癌症、病毒感染、病原体检测和遗传疾病相关的研究。目前的 CRISPR/Cas9 研究基于基于数据的模型进行靶标和脱靶预测,因为在非靶序列位置可能发生切割。如今,常规机器学习和深度学习方法被定期应用于准确预测给定单引导 RNA(sgRNA)的靶标敲除效率和脱靶谱。在本文中,我们对 CRISPR/Cas9 中使用的传统机器学习和深度学习模型进行了概述和比较分析。我们强调了与靶标活性预测相关的关键研究挑战和方向。我们讨论了用于最新的靶标和脱靶预测模型的 sgRNA-DNA 序列编码的最新进展。此外,我们介绍了 CRISPR/Cas9 预测模型中使用的最流行的深度学习神经网络架构。最后,我们总结了现有的挑战,并讨论了靶标和脱靶预测领域未来可能的研究方向。本文为有兴趣将机器学习方法应用于 CRISPR/Cas9 基因组编辑领域的学术和工业研究人员提供了有价值的支持。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/edb4/10199778/fbce80562c8e/bbad131f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验