College of Basic Sciences, Shanxi Agricultural University, 1 Mingxian South Road, Taigu District, Jinzhong, 030801, China.
School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, 11 North Third Ring Road East, Chaoyang District, Beijing 100029, China.
Brief Bioinform. 2024 Jul 25;25(5). doi: 10.1093/bib/bbae433.
Systematic characterization of biological effects to genetic perturbation is essential to the application of molecular biology and biomedicine. However, the experimental exhaustion of genetic perturbations on the genome-wide scale is challenging. Here, we show TranscriptionNet, a deep learning model that integrates multiple biological networks to systematically predict transcriptional profiles to three types of genetic perturbations based on transcriptional profiles induced by genetic perturbations in the L1000 project: RNA interference, clustered regularly interspaced short palindromic repeat, and overexpression. TranscriptionNet performs better than existing approaches in predicting inducible gene expression changes for all three types of genetic perturbations. TranscriptionNet can predict transcriptional profiles for all genes in existing biological networks and increases perturbational gene expression changes for each type of genetic perturbation from a few thousand to 26 945 genes. TranscriptionNet demonstrates strong generalization ability when comparing predicted and true gene expression changes on different external tasks. Overall, TranscriptionNet can systemically predict transcriptional consequences induced by perturbing genes on a genome-wide scale and thus holds promise to systemically detect gene function and enhance drug development and target discovery.
系统地描述遗传扰动对生物的影响,对于分子生物学和生物医学的应用至关重要。然而,在全基因组范围内进行遗传扰动的实验性穷尽是具有挑战性的。在这里,我们展示了 TranscriptionNet,这是一种深度学习模型,它整合了多个生物网络,以便根据 L1000 项目中遗传扰动诱导的转录谱,系统地预测三种类型的遗传扰动的转录谱:RNA 干扰、簇状规律间隔短回文重复和过表达。TranscriptionNet 在预测所有三种类型的遗传扰动的诱导基因表达变化方面表现优于现有方法。TranscriptionNet 可以预测现有生物网络中所有基因的转录谱,并将每种类型的遗传扰动的扰动基因表达变化从几千个增加到 26945 个。当在不同的外部任务上比较预测和真实的基因表达变化时,TranscriptionNet 表现出很强的泛化能力。总的来说,TranscriptionNet 可以系统地预测在全基因组范围内基因扰动所诱导的转录后果,因此有望系统地检测基因功能,并增强药物开发和靶点发现。