The Institute of Chemistry and Center of Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune411008, India.
Langmuir. 2024 Oct 22;40(42):22152-22158. doi: 10.1021/acs.langmuir.4c02620. Epub 2024 Oct 7.
is a pathogenic bacterium that contains the surface-bound neuraminidase, . has two domains that interact with sialosides. It is hard to determine the contribution of each domain separately on catalysis or binding. In this work, we used biochemical methods to obtain the separated domains, applied electrochemical and surface analysis approaches, and determined the catalytic and binding preferences toward a surface-bound library of sialosides. Impedimetric studies on two different surfaces revealed that protein-surface interactions provide a tool for distinguishing the unique contribution of each domain at the interface affecting the substrate preference of the enzyme in different surroundings. We showed that each domain has a sialoside-specific affinity. Furthermore, while the interaction of the sialoside-covered surface with the carbohydrate-binding domain results in an increase in impedance and binding, the catalytic domain adheres to the surface at high concentrations but retains its catalytic activity at low concentrations.
是一种致病细菌,其表面含有神经氨酸酶。该酶有两个与唾液酸结合的结构域。要分别确定每个结构域在催化或结合方面的贡献非常困难。在这项工作中,我们使用生化方法获得了分离的结构域,应用电化学和表面分析方法,确定了对表面结合的唾液酸文库的催化和结合偏好。在两种不同表面上的阻抗研究表明,蛋白质-表面相互作用提供了一种工具,可以区分每个结构域在界面上的独特贡献,从而影响酶在不同环境中的底物偏好。我们表明,每个结构域都具有唾液酸特异性亲和力。此外,虽然覆盖有唾液酸的表面与碳水化合物结合结构域的相互作用会导致阻抗和结合增加,但催化结构域在高浓度下会附着在表面上,但在低浓度下仍保持其催化活性。