The Institute of Chemistry and Center of Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune 411008, India.
Langmuir. 2024 Apr 9;40(14):7471-7478. doi: 10.1021/acs.langmuir.3c03943. Epub 2024 Mar 30.
Neuraminidases (NA) are sialic acid-cleaving enzymes that are used by both bacteria and viruses. These enzymes have sialoside structure-related binding and cleaving preferences. Differentiating between these enzymes requires using a large array of hard-to-access sialosides. In this work, we used electrochemical impedimetric biosensing to differentiate among several pathogene-related NAs. We used a limited set of sialosides and tailored the surface properties. Various sialosides were grafted on two different surfaces with unique properties. Electrografting on glassy carbon electrodes provided low-density sialoside-functionalized surfaces with a hydrophobic submonolayer. A two-step assembly on gold electrodes provided a denser sialoside layer on a negatively charged submonolayer. The synthesis of each sialoside required dozens of laborious steps. Utilizing the unique protein-electrode interaction modes resulted in richer biodata without increasing the synthetic load. These principles allowed for profiling NAs and determining the efficacy of various antiviral inhibitors.
神经氨酸酶(NA)是一类能够裂解唾液酸的酶,细菌和病毒均可利用该酶。这些酶对具有唾液酸结构的糖苷具有特定的结合和裂解偏好。区分这些酶需要使用大量难以获得的唾液酸苷。在这项工作中,我们使用电化学阻抗生物传感技术来区分几种与病原体相关的 NAs。我们使用了有限数量的唾液酸苷,并对表面性质进行了调整。各种唾液酸苷被嫁接到具有独特性质的两种不同表面上。在玻璃碳电极上电聚合可提供具有疏水性亚单层的低密度唾液酸苷功能化表面。在金电极上的两步组装可在带负电荷的亚单层上提供更密集的唾液酸苷层。每个唾液酸苷的合成都需要数十个繁琐的步骤。利用独特的蛋白质-电极相互作用模式可以在不增加合成负担的情况下获得更丰富的生物数据。这些原则可用于分析 NAs 并确定各种抗病毒抑制剂的效果。