Suppr超能文献

在伽马振荡背景下分析自上而下的视觉注意力:一种基于层的网络网络方法。

Analyzing top-down visual attention in the context of gamma oscillations: a layer- dependent network-of- networks approach.

作者信息

Zheng Tianyi, Sugino Masato, Jimbo Yasuhiko, Ermentrout G Bard, Kotani Kiyoshi

机构信息

Department of Precision Engineering, The University of Tokyo, Tokyo, Japan.

Department of Mathematics, University of Pittsburgh, Pittsburgh, PA, United States.

出版信息

Front Comput Neurosci. 2024 Sep 23;18:1439632. doi: 10.3389/fncom.2024.1439632. eCollection 2024.

Abstract

Top-down visual attention is a fundamental cognitive process that allows individuals to selectively attend to salient visual stimuli in the environment. Recent empirical findings have revealed that gamma oscillations participate in the modulation of visual attention. However, computational studies face challenges when analyzing the attentional process in the context of gamma oscillation due to the unstable nature of gamma oscillations and the complexity induced by the layered fashion in the visual cortex. In this study, we propose a layer-dependent network-of-networks approach to analyze such attention with gamma oscillations. The model is validated by reproducing empirical findings on orientation preference and the enhancement of neuronal response due to top-down attention. We perform parameter plane analysis to classify neuronal responses into several patterns and find that the neuronal response to sensory and attention signals was modulated by the heterogeneity of the neuronal population. Furthermore, we revealed a counter-intuitive scenario that the excitatory populations in layer 2/3 and layer 5 exhibit opposite responses to the attentional input. By modification of the original model, we confirmed layer 6 plays an indispensable role in such cases. Our findings uncover the layer-dependent dynamics in the cortical processing of visual attention and open up new possibilities for further research on layer-dependent properties in the cerebral cortex.

摘要

自上而下的视觉注意力是一种基本的认知过程,它使个体能够有选择地关注环境中显著的视觉刺激。最近的实证研究结果表明,伽马振荡参与视觉注意力的调节。然而,由于伽马振荡的不稳定性质以及视觉皮层中分层方式所带来的复杂性,计算研究在分析伽马振荡背景下的注意力过程时面临挑战。在本研究中,我们提出一种基于层的网络方法来分析这种与伽马振荡相关的注意力。该模型通过重现关于方向偏好以及自上而下的注意力导致神经元反应增强的实证研究结果得到验证。我们进行参数平面分析,将神经元反应分类为几种模式,发现神经元对感觉和注意力信号的反应受到神经元群体异质性的调节。此外,我们揭示了一个与直觉相反的情况,即第2/3层和第5层中的兴奋性群体对注意力输入表现出相反的反应。通过对原始模型的修改,我们证实第6层在这种情况下起着不可或缺的作用。我们的研究结果揭示了视觉注意力皮层处理过程中基于层的动态变化,并为进一步研究大脑皮层中基于层的特性开辟了新的可能性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9b77/11456483/8e81cbd31bf1/fncom-18-1439632-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验