Chatterjee Shubhangini, Yadalam Pradeep Kumar
Department of Periodontics, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND.
Cureus. 2024 Sep 6;16(9):e68764. doi: 10.7759/cureus.68764. eCollection 2024 Sep.
Introduction The signal transducer and activator of transcription-1 (STAT-1) are tightly controlled signaling pathways, with induced genes acting as positive and negative regulators. Persistent activation of the signal transducer and activator of transcription (STATs), particularly signal transducer and activator of transcription-3 (STAT-3) and signal transducer and activator of transcription-5 (STAT-5), is common in human tumors and cell lines. STAT molecules act as transcription factors, regulated by ligands like interferon-α (IFN-α), interferon-γ (IFN-γ), epidermal growth factor (EGF), platelet-derived growth factor (PDGF), interleukin-6 (IL-6) and interleukin-27 (IL-27). STAT-1 mutations can cause infections like periodontitis, a chronic inflammatory disease affecting gum tissue and bone. STAT-1 drug-gene interactions are being studied for therapeutic applications. Our study aims to predict drug-gene interactions of STAT-1 receptors in periodontal inflammation using graph attention networks (GATs). Methodology The study used a dataset of 215 drug-gene interactions to train and test a GAT model. The data was cleaned and normalized before being subjected to GATs using the Python library. Cytoscape and cytoHubba were used to visualize and analyze biological networks, including drug-gene interactome networks. The GAT model consisted of two graph attention layers, with the first layer producing eight features and the second layer aggregating outputs for binary classification. The model was trained using the Adam optimizer and CrossEntropyLoss function. Results The drug-gene interactome network, analyzed using Cytoscape, had 657 nodes, 1591 edges, and 4.755 neighbors. The predictive GAT model had low accuracy due to data availability and complexity. Conclusion The GAT model for drug-gene interactions in periodontal inflammation had low accuracy due to data limitations, complexity, and inability to capture all relevant features.
引言 信号转导和转录激活因子1(STAT-1)是受到严格调控的信号通路,其诱导基因可作为正调控因子和负调控因子。信号转导和转录激活因子(STATs)的持续激活,尤其是信号转导和转录激活因子3(STAT-3)和信号转导和转录激活因子5(STAT-5),在人类肿瘤和细胞系中很常见。STAT分子作为转录因子,受干扰素-α(IFN-α)、干扰素-γ(IFN-γ)、表皮生长因子(EGF)、血小板衍生生长因子(PDGF)、白细胞介素-6(IL-6)和白细胞介素-27(IL-27)等配体调控。STAT-1突变可导致诸如牙周炎等感染,牙周炎是一种影响牙龈组织和骨骼的慢性炎症性疾病。目前正在研究STAT-1药物-基因相互作用的治疗应用。我们的研究旨在使用图注意力网络(GATs)预测牙周炎中STAT-1受体的药物-基因相互作用。
方法 本研究使用了一个包含215种药物-基因相互作用的数据集来训练和测试GAT模型。数据在使用Python库进行GAT分析之前进行了清理和归一化处理。使用Cytoscape和cytoHubba可视化和分析生物网络,包括药物-基因相互作用组网络。GAT模型由两个图注意力层组成,第一层产生八个特征,第二层聚合输出以进行二元分类。该模型使用Adam优化器和交叉熵损失函数进行训练。
结果 使用Cytoscape分析的药物-基因相互作用组网络有657个节点、1591条边和4.755个邻居。由于数据可用性和复杂性,预测性GAT模型的准确性较低。
结论 由于数据限制、复杂性以及无法捕捉所有相关特征,用于牙周炎药物-基因相互作用的GAT模型准确性较低。