Suppr超能文献

比较图采样与聚合(SAGE)和图注意力网络在预测牙周感染与耐药中广谱β-内酰胺酶的药物-基因关联方面的应用。

Comparing Graph Sample and Aggregation (SAGE) and Graph Attention Networks in the Prediction of Drug-Gene Associations of Extended-Spectrum Beta-Lactamases in Periodontal Infections and Resistance.

作者信息

Harris Johnisha, Yadalam Pradeep Kumar, Anegundi Raghavendra Vamsi, Arumuganainar Deepavalli

机构信息

Periodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND.

出版信息

Cureus. 2024 Aug 29;16(8):e68082. doi: 10.7759/cureus.68082. eCollection 2024 Aug.

Abstract

INTRODUCTION

Gram-negative bacteria exhibit more antibiotic resistance than gram-positive bacteria due to their cell wall structure and composition differences. Porins, or protein channels in these bacteria, can allow small, hydrophilic antibiotics to diffuse, affecting their susceptibility. Mutations in porin protein genes can also impair antibiotic entry. Predicting drug-gene associations of extended-spectrum beta-lactamases (ESBLs) is crucial as they confer resistance to beta-lactam antibiotics, challenging the treatment of infections. This aids clinicians in selecting suitable treatments, optimizing drug usage, enhancing patient outcomes, and controlling antibiotic resistance in healthcare settings. Graph-based neural networks can predict drug-gene associations in periodontal infections and resistance. The aim of the study was to predict drug-gene associations of ESBLs in periodontal infections and resistance.

METHODS

The study focuses on analyzing drug-gene associations using probes and drugs. The data was converted into graph language, assigning nodes and edges for drugs and genes. Graph neural networks (GNNs) and similar algorithms were implemented using Google Colab and Python. Cytoscape and CytoHubba are open-source software platforms used for network analysis and visualization. GNNs were used for tasks like node classification, link prediction, and graph-level prediction. Three graph-based models were used: graph convolutional network (GCN), Graph SAGE, and graph attention network (GAT). Each model was trained for 200 epochs using the Adam optimizer with a learning rate of 0.01 and a weight decay of 5e-4.

RESULTS

The drug-gene association network has 57 nodes, 79 edges, and a 2.730 characteristic path length. Its structure, organization, and connectivity are analyzed using the GCN and Graph SAGE, which show high accuracy, precision, recall, and an F1-score of 0.94. GAT's performance metrics are lower, with an accuracy of 0.68, precision of 0.47, recall of 0.68, and F1-score of 0.56, suggesting that it may not be as effective in capturing drug-gene relationships.

CONCLUSION

Compared to ESBLs, both GCN and Graph SAGE demonstrate excellent performance with accuracy, precision, recall, and an F1-score of 0.94. These results indicate that GCN and Graph SAGE are highly effective in predicting drug-gene associations related to ESBLs. GCN and Graph SAGE outperform GAT in predicting drug-gene associations for ESBLs. Improvements include data augmentation, regularization, and cross-validation. Ethical considerations, fairness, and open-source implementations are crucial for future research in precision periodontal treatment.

摘要

引言

革兰氏阴性菌由于其细胞壁结构和成分的差异,比革兰氏阳性菌表现出更多的抗生素耐药性。孔蛋白,即这些细菌中的蛋白质通道,可允许小的亲水性抗生素扩散,从而影响它们的药敏性。孔蛋白基因的突变也会阻碍抗生素进入。预测超广谱β-内酰胺酶(ESBLs)的药物-基因关联至关重要,因为它们会导致对β-内酰胺类抗生素产生耐药性,给感染治疗带来挑战。这有助于临床医生选择合适的治疗方法、优化药物使用、改善患者预后以及控制医疗机构中的抗生素耐药性。基于图的神经网络可以预测牙周感染和耐药性中的药物-基因关联。本研究的目的是预测牙周感染和耐药性中ESBLs的药物-基因关联。

方法

该研究专注于使用探针和药物分析药物-基因关联。数据被转换为图语言,为药物和基因分配节点和边。使用谷歌Colab和Python实现图神经网络(GNNs)及类似算法。Cytoscape和CytoHubba是用于网络分析和可视化的开源软件平台。GNNs用于节点分类、链接预测和图级预测等任务。使用了三种基于图的模型:图卷积网络(GCN)、图采样聚合(Graph SAGE)和图注意力网络(GAT)。每个模型使用Adam优化器训练200个轮次,学习率为0.01,权重衰减为5e-4。

结果

药物-基因关联网络有57个节点、79条边,特征路径长度为2.730。使用GCN和Graph SAGE对其结构、组织和连通性进行分析,结果显示准确率、精确率、召回率均很高,F1分数为0.94。GAT的性能指标较低,准确率为0.68,精确率为0.47,召回率为0.68,F1分数为0.56,这表明它在捕捉药物-基因关系方面可能效果不佳。

结论

与ESBLs相比,GCN和Graph SAGE均表现出优异的性能,准确率、精确率、召回率和F1分数均为0.94。这些结果表明,GCN和Graph SAGE在预测与ESBLs相关的药物-基因关联方面非常有效。在预测ESBLs的药物-基因关联方面,GCN和Graph SAGE优于GAT。改进措施包括数据增强、正则化和交叉验证。伦理考量、公平性和开源实现对于精准牙周治疗的未来研究至关重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/13cf/11437384/3ae711bd802d/cureus-0016-00000068082-i01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验