Suppr超能文献

基于机器学习的脓毒症后虚弱模型的开发与验证

Development and validation of a machine learning-based model for post-sepsis frailty.

作者信息

Yeo Hye Ju, Noh Dasom, Kim Tae Hwa, Jang Jin Ho, Lee Young Seok, Park Sunghoon, Moon Jae Young, Jeon Kyeongman, Oh Dong Kyu, Lee Su Yeon, Park Mi Hyeon, Lim Chae-Man, Cho Woo Hyun, Kwon Sunyoung

机构信息

Division of Allergy, Pulmonary and Critical Care Medicine, Department of Internal Medicine, Transplant Research Center, Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Republic of Korea.

Department of Internal Medicine, School of Medicine, Pusan National University, Busan, Republic of Korea.

出版信息

ERJ Open Res. 2024 Oct 7;10(5). doi: 10.1183/23120541.00166-2024. eCollection 2024 Sep.

Abstract

BACKGROUND

The development of post-sepsis frailty is a common and significant problem, but it is a challenge to predict.

METHODS

Data for deep learning were extracted from a national multicentre prospective observational cohort of patients with sepsis in Korea between September 2019 and December 2021. The primary outcome was frailty at survival discharge, defined as a clinical frailty score on the Clinical Frailty Scale ≥5. We developed a deep learning model for predicting frailty after sepsis by 10 variables routinely collected at the recognition of sepsis. With cross-validation, we trained and tuned six machine learning models, including four conventional and two neural network models. Moreover, we computed the importance of each predictor variable in the model. We measured the performance of these models using a temporal validation data set.

RESULTS

A total of 8518 patients were included in the analysis; 5463 (64.1%) were frail, and 3055 (35.9%) were non-frail at discharge. The Extreme Gradient Boosting (XGB) achieved the highest area under the receiver operating characteristic curve (AUC) (0.8175) and accuracy (0.7414). To confirm the generalisation performance of artificial intelligence in predicting frailty at discharge, we conducted external validation with the COVID-19 data set. The XGB still showed a good performance with an AUC of 0.7668. The machine learning model could predict frailty despite the disparity in data distribution.

CONCLUSION

The machine learning-based model developed for predicting frailty after sepsis achieved high performance with limited baseline clinical parameters.

摘要

背景

脓毒症后虚弱的发展是一个常见且重要的问题,但预测具有挑战性。

方法

深度学习数据取自2019年9月至2021年12月韩国全国多中心脓毒症患者前瞻性观察队列。主要结局是存活出院时的虚弱,定义为临床虚弱量表上的临床虚弱评分≥5。我们通过在脓毒症确诊时常规收集的10个变量开发了一个用于预测脓毒症后虚弱的深度学习模型。通过交叉验证,我们训练并调整了六个机器学习模型,包括四个传统模型和两个神经网络模型。此外,我们计算了模型中每个预测变量的重要性。我们使用时间验证数据集测量这些模型的性能。

结果

分析共纳入8518例患者;5463例(64.1%)虚弱,3055例(35.9%)出院时非虚弱。极端梯度提升(XGB)在受试者工作特征曲线下面积(AUC)(0.8175)和准确率(0.7414)方面表现最高。为了确认人工智能在预测出院时虚弱方面的泛化性能,我们使用COVID-19数据集进行了外部验证。XGB的AUC为0.7668,仍表现良好。尽管数据分布存在差异,但机器学习模型仍可预测虚弱。

结论

为预测脓毒症后虚弱而开发的基于机器学习的模型在有限的基线临床参数下取得了高性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c007/11456972/22a0ca898c3e/00166-2024.01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验