Wu Liqing, Huang Wenxia, Li Dongyang, Jia Hongnan, Zhao Bingbing, Zhu Juan, Zhou Haiqing, Luo Wei
College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, P.R. China.
Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Department of Physics and Synergetic Innovation Center for Quantum Effects and Applications, Hunan Normal University, Changsha, Hunan 410081, P.R. China.
Angew Chem Int Ed Engl. 2025 Jan 2;64(1):e202413334. doi: 10.1002/anie.202413334. Epub 2024 Nov 7.
Understanding the structure and dynamic process of interfacial water molecules at the catalyst-electrolyte interface on acidic oxygen evolution reaction (OER) kinetics is highly desirable for the development of proton exchange membrane water electrolyzers. Herein, we construct a series of p-block metal elements (Ga, In, Sn) doped RuO catalysts with manipulated electronic structure and Ru-O covalency to investigate the effect of electrochemical interfacial engineering on the improvement of acidic OER activity. Associated with operando attenuated total reflectance surface-enhanced infrared absorption spectroscopy measurements and theoretical analysis, we uncover the free-HO enriched local environment and dynamic evolution from 4-coordinated hydrogen-bonded water and 2-coordinated hydrogen-bonded water to free-HO on the surface of Ga-RuO, are responsible for the optimized connectivity of hydrogen bonding network in the electrical double layer by promoting solvent reorganization. In addition, the structurally ordered interfacial water molecules facilitate high-efficiency proton-coupled electron transfer across the interface, leading to reduced energy barrier of the follow-up dissociation process and enhanced acidic OER performance. This work highlights the key role of structure and dynamic process of interfacial water for acidic OER, and demonstrates the electrochemical interfacial engineering as an efficient strategy to design high-performance electrocatalysts.
了解催化剂 - 电解质界面处界面水分子的结构和动态过程对酸性析氧反应(OER)动力学的影响,对于质子交换膜水电解槽的发展至关重要。在此,我们构建了一系列具有可控电子结构和Ru - O共价性的p区金属元素(Ga、In、Sn)掺杂的RuO催化剂,以研究电化学界面工程对提高酸性OER活性的影响。结合原位衰减全反射表面增强红外吸收光谱测量和理论分析,我们发现Ga - RuO表面富含游离 - HO的局部环境以及从4配位氢键水和2配位氢键水到游离 - HO的动态演变,通过促进溶剂重组负责优化双电层中氢键网络的连通性。此外,结构有序的界面水分子促进了跨界面的高效质子耦合电子转移,导致后续解离过程的能垒降低,酸性OER性能增强。这项工作突出了界面水的结构和动态过程对酸性OER的关键作用,并证明了电化学界面工程是设计高性能电催化剂的有效策略。