Suppr超能文献

诱捕器颜色对深度学习模型在粘性诱捕器图像中识别昆虫物种的能力有强烈影响。

Trap colour strongly affects the ability of deep learning models to recognize insect species in images of sticky traps.

作者信息

Ong Song-Quan, Høye Toke Thomas

机构信息

Department of Ecoscience, Aarhus University, Aarhus, Denmark.

Institute for Tropical Biology and Conservation, Universiti Malaysia Sabah, Kota Kinabalu, Malaysia.

出版信息

Pest Manag Sci. 2025 Feb;81(2):654-666. doi: 10.1002/ps.8464. Epub 2024 Oct 8.

Abstract

BACKGROUND

The use of computer vision and deep learning models to automatically classify insect species on sticky traps has proven to be a cost- and time-efficient approach to pest monitoring. As different species are attracted to different colours, the variety of sticky trap colours poses a challenge to the performance of the models. However, the effectiveness of deep learning in classifying pests on different coloured sticky traps has not yet been sufficiently explored. In this study, we aim to investigate the influence of sticky trap colour and imaging devices on the performance of deep learning models in classifying pests on sticky traps.

RESULTS

Our results show that using the MobileNetV2 architecture with transparent sticky traps as training data, the model predicted the pest species on transparent sticky traps with an accuracy of at least 0.95 and on other sticky trap colours with at least 0.85 of the F1 score. Using a generalised linear model (GLM) and a Boruta feature selection algorithm, we also showed that the colour and architecture of the sticky traps significantly influenced the performance of the model.

CONCLUSION

Our results support the development of an automatic classification of pests on a sticky trap, which should focus on colour and deep learning architecture to achieve good results. Future studies could aim to incorporate the trap system into pest monitoring, providing more accurate and cost-effective results in a pest management programme. © 2024 The Author(s). Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

摘要

背景

事实证明,使用计算机视觉和深度学习模型对粘虫板上的昆虫物种进行自动分类是一种经济高效的害虫监测方法。由于不同物种对不同颜色有偏好,粘虫板颜色的多样性对模型性能构成了挑战。然而,深度学习在对不同颜色粘虫板上的害虫进行分类方面的有效性尚未得到充分探索。在本研究中,我们旨在调查粘虫板颜色和成像设备对深度学习模型在对粘虫板上的害虫进行分类时性能的影响。

结果

我们的结果表明,以透明粘虫板作为训练数据使用MobileNetV2架构时,该模型对透明粘虫板上害虫物种的预测准确率至少为0.95,对其他颜色粘虫板上害虫物种的预测F1分数至少为0.85。使用广义线性模型(GLM)和Boruta特征选择算法,我们还表明粘虫板的颜色和架构对模型性能有显著影响。

结论

我们的结果支持开发一种对粘虫板上害虫进行自动分类的方法,该方法应关注颜色和深度学习架构以取得良好效果。未来的研究可以旨在将诱捕系统纳入害虫监测,在害虫管理计划中提供更准确且具有成本效益的结果。© 2024作者。《害虫管理科学》由约翰·威利父子有限公司代表化学工业协会出版。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b22c/11716339/1faa1eddcbe2/PS-81-654-g007.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验