Suppr超能文献

一种新型的生物信息学管道,用于鉴定免疫抑制受体作为潜在的治疗靶点。

A novel bioinformatics pipeline for the identification of immune inhibitory receptors as potential therapeutic targets.

机构信息

Center for Translational Immunology, University Medical Centre Utrecht, Utrecht University, Utrecht, Netherlands.

Oncode Institute, Utrecht, Netherlands.

出版信息

Elife. 2024 Oct 8;13:RP92870. doi: 10.7554/eLife.92870.

Abstract

Despite major successes with inhibitory receptor blockade in cancer, the identification of novel inhibitory receptors as putative drug targets is needed due to lack of durable responses, therapy resistance, and side effects. Most inhibitory receptors signal via immunoreceptor tyrosine-based inhibitory motifs (ITIMs) and previous studies estimated that our genome contains over 1600 ITIM-bearing transmembrane proteins. However, testing and development of these candidates requires increased understanding of their expression patterns and likelihood to function as inhibitory receptor. Therefore, we designed a novel bioinformatics pipeline integrating machine learning-guided structural predictions and sequence-based likelihood models to identify putative inhibitory receptors. Using transcriptomics data of immune cells, we determined the expression of these novel inhibitory receptors, and classified them into previously proposed functional categories. Known and putative inhibitory receptors were expressed across different immune cell subsets with cell type-specific expression patterns. Furthermore, putative immune inhibitory receptors were differentially expressed in subsets of tumour infiltrating T cells. In conclusion, we present an inhibitory receptor pipeline that identifies 51 known and 390 novel human inhibitory receptors. This pipeline will support future drug target selection across diseases where therapeutic targeting of immune inhibitory receptors is warranted.

摘要

尽管在癌症的抑制性受体阻断方面取得了重大成功,但由于缺乏持久的反应、治疗耐药性和副作用,需要确定新的抑制性受体作为潜在的药物靶点。大多数抑制性受体通过免疫受体酪氨酸抑制基序 (ITIM) 信号传导,先前的研究估计我们的基因组包含超过 1600 种带有 ITIM 的跨膜蛋白。然而,这些候选物的测试和开发需要提高对其表达模式和作为抑制性受体功能的可能性的理解。因此,我们设计了一种新的生物信息学管道,该管道集成了机器学习引导的结构预测和基于序列的可能性模型,以识别潜在的抑制性受体。我们使用免疫细胞的转录组学数据来确定这些新型抑制性受体的表达,并将它们分类为先前提出的功能类别。已知和潜在的抑制性受体在不同的免疫细胞亚群中表达,并具有细胞类型特异性表达模式。此外,肿瘤浸润 T 细胞亚群中的潜在免疫抑制性受体表达存在差异。总之,我们提出了一种抑制性受体管道,该管道可识别 51 种已知和 390 种新型人类抑制性受体。该管道将支持未来在需要免疫抑制性受体治疗靶向的疾病中进行药物靶点选择。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7a0/11460946/e934cebbfeed/elife-92870-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验