Suppr超能文献

关于无向图的网络去卷积。

On network deconvolution for undirected graphs.

机构信息

Division of Biostatistics and Health Data Science, University of Minnesota, Minneapolis, MN 55455, United States.

Department of Statistics, Florida State University, Tallahassee, FL 32306, United States.

出版信息

Biometrics. 2024 Oct 3;80(4). doi: 10.1093/biomtc/ujae112.

Abstract

Network deconvolution (ND) is a method to reconstruct a direct-effect network describing direct (or conditional) effects (or associations) between any two nodes from a given network depicting total (or marginal) effects (or associations). Its key idea is that, in a directed graph, a total effect can be decomposed into the sum of a direct and an indirect effects, with the latter further decomposed as the sum of various products of direct effects. This yields a simple closed-form solution for the direct-effect network, facilitating its important applications to distinguish direct and indirect effects. Despite its application to undirected graphs, it is not well known why the method works, leaving it with skepticism. We first clarify the implicit linear model assumption underlying ND, then derive a surprisingly simple result on the equivalence between ND and use of precision matrices, offering insightful justification and interpretation for the application of ND to undirected graphs. We also establish a formal result to characterize the effect of scaling a total-effect graph. Finally, leveraging large-scale genome-wide association study data, we show a novel application of ND to contrast marginal versus conditional genetic correlations between body height and risk of coronary artery disease; the results align with an inferred causal directed graph using ND. We conclude that ND is a promising approach with its easy and wide applicability to both directed and undirected graphs.

摘要

网络去卷积(ND)是一种从描述总效应(或关联)的给定网络重建直接效应网络的方法,该网络直接描述(或条件)两个节点之间的效应(或关联)。其关键思想是,在有向图中,总效应可以分解为直接效应和间接效应的和,后者进一步分解为各种直接效应乘积的和。这为直接效应网络提供了一个简单的闭式解,便于其重要应用于区分直接和间接效应。尽管它被应用于无向图,但它的工作原理为何不为人知,这引起了人们的怀疑。我们首先澄清了 ND 背后隐含的线性模型假设,然后得出了一个令人惊讶的简单结果,即 ND 与使用精确矩阵之间的等价性,为 ND 在无向图中的应用提供了有见地的解释和理解。我们还建立了一个正式的结果来刻画总效应图缩放的影响。最后,利用大规模全基因组关联研究数据,我们展示了 ND 在对比身高和冠心病风险之间的边际和条件遗传相关性方面的新应用;结果与使用 ND 推断的因果有向图一致。我们的结论是,ND 是一种很有前途的方法,它具有简单易用的特点,并且可以广泛应用于有向图和无向图。

相似文献

1
On network deconvolution for undirected graphs.关于无向图的网络去卷积。
Biometrics. 2024 Oct 3;80(4). doi: 10.1093/biomtc/ujae112.
5
[Basics of using the DAG programs].[使用DAG程序的基础知识]
Gesundheitswesen. 2011 Dec;73(12):893-6. doi: 10.1055/s-0031-1291189. Epub 2011 Dec 22.
7
Approximate von Neumann entropy for directed graphs.有向图的近似冯·诺依曼熵
Phys Rev E Stat Nonlin Soft Matter Phys. 2014 May;89(5):052804. doi: 10.1103/PhysRevE.89.052804. Epub 2014 May 12.
8
Causal Artificial Intelligence Models of Food Quality Data.食品质量数据的因果人工智能模型。
Food Technol Biotechnol. 2024 Mar;62(1):102-109. doi: 10.17113/ftb.62.01.24.8301.
10
Transduction on Directed Graphs via Absorbing Random Walks.基于吸收随机游走的有向图上的转换。
IEEE Trans Pattern Anal Mach Intell. 2018 Jul;40(7):1770-1784. doi: 10.1109/TPAMI.2017.2730871. Epub 2017 Aug 11.

本文引用的文献

5
An integrated framework for local genetic correlation analysis.用于局部遗传相关性分析的综合框架。
Nat Genet. 2022 Mar;54(3):274-282. doi: 10.1038/s41588-022-01017-y. Epub 2022 Mar 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验