Suppr超能文献

人类大脑中定向和非定向功能磁共振成像连接组的变异性和可重复性

Variability and Reproducibility of Directed and Undirected Functional MRI Connectomes in the Human Brain.

作者信息

Conti Allegra, Duggento Andrea, Guerrisi Maria, Passamonti Luca, Indovina Iole, Toschi Nicola

机构信息

Laboratory of Neuromotor Physiology, IRCCS Santa Lucia Foundation, 00179 Rome, Italy.

Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy.

出版信息

Entropy (Basel). 2019 Jul 6;21(7):661. doi: 10.3390/e21070661.

Abstract

A growing number of studies are focusing on methods to estimate and analyze the functional connectome of the human brain. Graph theoretical measures are commonly employed to interpret and synthesize complex network-related information. While resting state functional MRI (rsfMRI) is often employed in this context, it is known to exhibit poor reproducibility, a key factor which is commonly neglected in typical cohort studies using connectomics-related measures as biomarkers. We aimed to fill this gap by analyzing and comparing the inter- and intra-subject variability of connectivity matrices, as well as graph-theoretical measures, in a large (n = 1003) database of young healthy subjects which underwent four consecutive rsfMRI sessions. We analyzed both directed (Granger Causality and Transfer Entropy) and undirected (Pearson Correlation and Partial Correlation) time-series association measures and related global and local graph-theoretical measures. While matrix weights exhibit a higher reproducibility in undirected, as opposed to directed, methods, this difference disappears when looking at global graph metrics and, in turn, exhibits strong regional dependence in local graphs metrics. Our results warrant caution in the interpretation of connectivity studies, and serve as a benchmark for future investigations by providing quantitative estimates for the inter- and intra-subject variabilities in both directed and undirected connectomic measures.

摘要

越来越多的研究聚焦于估计和分析人类大脑功能连接组的方法。图论测量方法通常用于解释和综合复杂的网络相关信息。虽然静息态功能磁共振成像(rsfMRI)在此背景下经常被使用,但众所周知,它的可重复性较差,而这一关键因素在使用连接组学相关测量作为生物标志物的典型队列研究中通常被忽视。我们旨在通过分析和比较在一个大型(n = 1003)年轻健康受试者数据库中,经过连续四次rsfMRI扫描的连接矩阵以及图论测量的受试者间和受试者内变异性,来填补这一空白。我们分析了有向(格兰杰因果关系和转移熵)和无向(皮尔逊相关和偏相关)时间序列关联测量以及相关的全局和局部图论测量。虽然矩阵权重在无向方法中比在有向方法中表现出更高的可重复性,但在查看全局图指标时这种差异消失了,并且在局部图指标中又表现出强烈的区域依赖性。我们的结果提醒在解释连接性研究时要谨慎,并通过为有向和无向连接组测量中的受试者间和受试者内变异性提供定量估计,为未来的研究提供了一个基准。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bab1/7515158/4330926c45e5/entropy-21-00661-g0A1.jpg

相似文献

2
Time-dependence of graph theory metrics in functional connectivity analysis.
Neuroimage. 2016 Jan 15;125:601-615. doi: 10.1016/j.neuroimage.2015.10.070. Epub 2015 Oct 27.
3
Imaging Connectomics and the Understanding of Brain Diseases.
Adv Exp Med Biol. 2019;1192:139-158. doi: 10.1007/978-981-32-9721-0_8.
4
Driving and driven architectures of directed small-world human brain functional networks.
PLoS One. 2011;6(8):e23460. doi: 10.1371/journal.pone.0023460. Epub 2011 Aug 12.
5
Test-retest reliability of graph metrics in high-resolution functional connectomics: a resting-state functional MRI study.
CNS Neurosci Ther. 2015 Oct;21(10):802-16. doi: 10.1111/cns.12431. Epub 2015 Jul 27.
6
Reproducibility and intercorrelation of graph theoretical measures in structural brain connectivity networks.
Med Image Anal. 2019 Feb;52:56-67. doi: 10.1016/j.media.2018.10.009. Epub 2018 Oct 26.
7
Variability of Resting-State Functional MRI Graph Theory Metrics across 3T Platforms.
J Neuroimaging. 2019 May;29(3):344-347. doi: 10.1111/jon.12603. Epub 2019 Jan 31.
8
The Connectomes: Methods of White Matter Tractography and Contributions of Resting State fMRI.
Semin Ultrasound CT MR. 2021 Oct;42(5):507-522. doi: 10.1053/j.sult.2021.07.007. Epub 2021 Aug 1.
10
Through the looking glass: Deep interpretable dynamic directed connectivity in resting fMRI.
Neuroimage. 2022 Dec 1;264:119737. doi: 10.1016/j.neuroimage.2022.119737. Epub 2022 Nov 7.

引用本文的文献

1
Molecular Mediated Angiogenesis and Vasculogenesis Networks.
Int J Mol Sci. 2025 Jun 30;26(13):6316. doi: 10.3390/ijms26136316.
2
Brain effective connectome based on fMRI and DTI data: Bayesian causal learning and assessment.
PLoS One. 2023 Aug 18;18(8):e0289406. doi: 10.1371/journal.pone.0289406. eCollection 2023.
3
Heritability of human "directed" functional connectome.
Brain Behav. 2023 May;13(5):e2839. doi: 10.1002/brb3.2839. Epub 2023 Mar 29.
4
Dementia ConnEEGtome: Towards multicentric harmonization of EEG connectivity in neurodegeneration.
Int J Psychophysiol. 2022 Feb;172:24-38. doi: 10.1016/j.ijpsycho.2021.12.008. Epub 2021 Dec 27.
5
A Note on the Reproducibility of Chaos Simulation.
Entropy (Basel). 2020 Aug 29;22(9):953. doi: 10.3390/e22090953.
6
Interrelations between dopamine and serotonin producing sites and regions of the default mode network.
Hum Brain Mapp. 2021 Feb 15;42(3):811-823. doi: 10.1002/hbm.25264. Epub 2020 Oct 31.
7
Reorganization of the structural connectome in primary open angle Glaucoma.
Neuroimage Clin. 2020;28:102419. doi: 10.1016/j.nicl.2020.102419. Epub 2020 Sep 9.

本文引用的文献

3
Functional connectome of the five-factor model of personality.
Personal Neurosci. 2018;1. doi: 10.1017/pen.2017.2. Epub 2018 May 25.
4
Graph theory methods: applications in brain networks.
Dialogues Clin Neurosci. 2018 Jun;20(2):111-121. doi: 10.31887/DCNS.2018.20.2/osporns.
5
Connectome: Graph theory application in functional brain network architecture.
Clin Neurophysiol Pract. 2017 Oct 24;2:206-213. doi: 10.1016/j.cnp.2017.09.003. eCollection 2017.
6
Generalized Recurrent Neural Network accommodating Dynamic Causal Modeling for functional MRI analysis.
Neuroimage. 2018 Sep;178:385-402. doi: 10.1016/j.neuroimage.2018.05.042. Epub 2018 May 18.
8
Interpreting and Utilising Intersubject Variability in Brain Function.
Trends Cogn Sci. 2018 Jun;22(6):517-530. doi: 10.1016/j.tics.2018.03.003. Epub 2018 Mar 30.
9
Multiscale Granger causality.
Phys Rev E. 2017 Oct;96(4-1):042150. doi: 10.1103/PhysRevE.96.042150. Epub 2017 Oct 25.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验