Department of Chemical and Biomolecular Engineering, University of Tennessee Knoxville, Knoxville, Tennessee, USA.
Center for Bioenergy Innovation, Oak Ridge, Tennessee, USA.
mSystems. 2024 Nov 19;9(11):e0095224. doi: 10.1128/msystems.00952-24. Epub 2024 Oct 8.
a Gram-positive thermophilic bacterium, is recognized for its probiotic properties and recent development as a microbial cell factory. Despite its importance for biotechnological applications, the current understanding of ' robustness is limited, especially for undomesticated strains. To fill this knowledge gap, we characterized the metabolic capability and performed functional genomics and systems analysis of a novel, robust strain, B-768. Genome sequencing revealed that B-768 has the largest genome known to date (3.94 Mbp), about 0.63 Mbp larger than the average genome of sequenced strains, with expanded carbohydrate metabolism and mobilome. Functional genomics identified a well-equipped genetic portfolio for utilizing a wide range of C5 (xylose, arabinose), C6 (glucose, mannose, galactose), and C12 (cellobiose) sugars present in biomass hydrolysates, which was validated experimentally. For growth on individual xylose and glucose, the dominant sugars in biomass hydrolysates, B-768 exhibited distinct phenotypes and proteome profiles. Faster growth and glucose uptake rates resulted in lactate overflow metabolism, which makes a lactate overproducer; however, slower growth and xylose uptake diminished overflow metabolism due to the high energy demand for sugar assimilation. Carbohydrate Transport and Metabolism (COG-G), Translation (COG-J), and Energy Conversion and Production (COG-C) made up 60%-65% of the measured proteomes but were allocated differently when growing on xylose and glucose. The trade-off in proteome reallocation, with high investment in COG-C over COG-G, explains the xylose growth phenotype with significant upregulation of xylose metabolism, pyruvate metabolism, and tricarboxylic acid (TCA) cycle. Strain B-768 tolerates and effectively utilizes inhibitory biomass hydrolysates containing mixed sugars and exhibits hierarchical sugar utilization with glucose as the preferential substrate.IMPORTANCEThe robustness of makes it a valuable microorganism for biotechnology applications; yet, this phenotype is not well understood at the cellular level. Through phenotypic characterization and systems analysis, this study elucidates the functional genomics and robustness of a novel, undomesticated strain, B-768, capable of utilizing inhibitory switchgrass biomass hydrolysates. The genome of B-768, enriched with carbohydrate metabolism genes, demonstrates high regulatory capacity. The coordination of proteome reallocation in Carbohydrate Transport and Metabolism (COG-G), Translation (COG-J), and Energy Conversion and Production (COG-C) is critical for effective cell growth, sugar utilization, and lactate production overflow metabolism. Overall, B-768 is a novel, robust, and promising strain that can be harnessed as a microbial biomanufacturing platform to produce chemicals and fuels from biomass hydrolysates.
一株革兰氏阳性嗜热菌,因其益生菌特性和最近作为微生物细胞工厂的发展而受到关注。尽管它在生物技术应用中具有重要意义,但目前对其“鲁棒性”的理解有限,尤其是对于非驯化菌株。为了填补这一知识空白,我们对一种新型、鲁棒菌株 B-768 的代谢能力进行了表征,并进行了功能基因组学和系统分析。基因组测序表明,B-768 拥有迄今为止已知的最大基因组(3.94 Mbp),比测序菌株的平均基因组大约大 0.63 Mbp,其碳水化合物代谢和移动基因组得到了扩展。功能基因组学鉴定出了一个功能齐全的基因组合,可用于利用生物质水解物中存在的广泛的 C5(木糖、阿拉伯糖)、C6(葡萄糖、甘露糖、半乳糖)和 C12(纤维二糖)糖,这在实验中得到了验证。对于在生物质水解物中占主导地位的单糖木糖和葡萄糖的生长,B-768 表现出明显不同的表型和蛋白质组特征。更快的生长和葡萄糖摄取率导致乳酸溢出代谢,使其成为乳酸的过度生产者;然而,较慢的生长和木糖摄取率由于糖同化的高能量需求而减少了溢出代谢。碳水化合物运输和代谢(COG-G)、翻译(COG-J)和能量转换和产生(COG-C)占测量蛋白质组的 60%-65%,但在木糖和葡萄糖上生长时分配方式不同。蛋白质组再分配的权衡,在 COG-C 上的高投资超过 COG-G,解释了木糖生长表型,显著上调了木糖代谢、丙酮酸代谢和三羧酸(TCA)循环。B-768 能够耐受并有效利用含有混合糖的抑制生物质水解物,并表现出分级糖利用,以葡萄糖为首选底物。重要性 的鲁棒性使其成为生物技术应用的有价值的微生物;然而,这种表型在细胞水平上还没有得到很好的理解。通过表型特征和系统分析,本研究阐明了新型非驯化菌株 B-768 的功能基因组学和鲁棒性,该菌株能够利用抑制性的柳枝稷生物质水解物。B-768 的基因组富含碳水化合物代谢基因,表现出高度的调控能力。碳水化合物运输和代谢(COG-G)、翻译(COG-J)和能量转换和产生(COG-C)中的蛋白质组再分配的协调对于有效的细胞生长、糖利用和乳酸生产溢出代谢至关重要。总体而言,B-768 是一种新型的、鲁棒的、有前途的 菌株,可以被利用作为微生物生物制造平台,从生物质水解物中生产化学品和燃料。